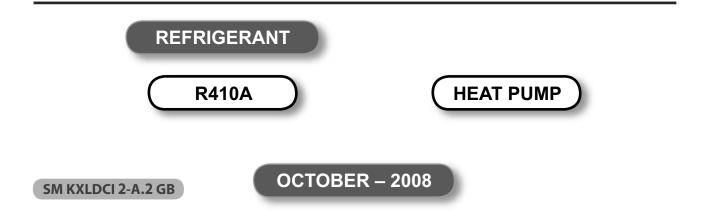
Airwell



KXL DC Inverter Series

Indoor Units	Outdoor Units
KXL 24 DCI	GC 24 DCI Z
KXL 30 DCI	GC 30 DCI

Airwell

LIST OF EFFECTIVE PAGES

Note: Changes in the pages are indicated by a "Revision#" in the footer of each effected page (when none indicates no changes in the relevant page). All pages in the following list represent effected/ non effected pages divided by chapters.

Dates of issue for original and changed pages are:

Original 0 July 2006

Total number of pages in this publication is 122 consisting of the following:

Page	Revision	Page	Revision	Page	Revision
No.	No. #	No.	No. #	No.	No. #

Title	2
Α	2
i	2
1-1 - 1-2	2
2-1 - 2-2	2
3-1	2
4-1 - 4-2	2
5-1 - 5-10	2
6-1 - 6-2	2
7-1	
8-1 - 8-2	
9-1	2
10-1	2
11-1-11-20	
12-1-12-20	2
13-1-13-7	2
14-1	2

• Zero in this column indicates an original page.

* Due to constant improvements please note that the data on this service manual can be modified with out notice. ** Photos are not contractual.

Table of Contents

1.	INTRODUCTION	-1
2.	PRODUCT DATA SHEET	2-1
3.	RATING CONDITIONS	3-1
4.	OUTLINE DIMENSIONS	1-1
5.	PERFORMANCE DATA & PRESSURE CURVES	5-1
6.	SOUND LEVEL CHARACTERISTICS	ծ-1
7.	ELECTRICAL DATA	7-1
8.	WIRING DIAGRAMS	3-1
9.	REFRIGERATION DIAGRAMS) -1
10.	TUBING CONNECTIONS	10-1
11.	TROUBLESHOOTING	1-1
12.	CONTROL SYSTEM	2-1
13.	EXPLODED VIEWS AND SPARE PARTS LISTS	3-1
14.	APPENDIX A	4-1

1. INTRODUCTION

1.1 General

The new **KXL DCI** split cassette range comprises the following RC (heat pump) models:

- KXL 24 DCI
- KXL 30 DCI

The New **KXL DC**I units can be easily fitted to residential and commercial applications featuring esthetic design, compact dimensions, and low noise operation.

1.2 Main Features

The **DCI KXL** series benefits from the most advanced technological innovations, namely:

- DC inverter technology.
- R410A.
- High COP.
- Lego Concept.
- Pre-Charged units up to the max' allowing tubing distance.
- Networking system connectivity.
- A dry contract for presence detector or power shedding.
- Cooling operation at outdoor temperature down to -10°C.
- Heating operation at outdoor temperature down to -15°C.
- Supports Indoor Air Quality features, such as Ionizer, Active Electro-Static Filter.
- Indoor large diameter cross flow fan, allowing low noise level operation.
- · Bended indoor coil with treated aluminum fins and coating for improved efficiency.
- · Easy access to the interconnecting tubing and wiring connections.
- Automatic treated air sweep.
- Low indoor and outdoor noise levels.
- Easy installation and service.
- Refrigerant pipes can be connected to the indoor unit from 6 different optional directions.
- Water condensate tray is equipped with two optional drain connections.

1.3 Control

The microprocessor indoor controller, and an infrared remote control, supplied as standard, provide complete operating function and programming. Remote controllers: RC-3/4, μ BMS.

Networking system Airconet version 4.2 and up, MIU SW version H8 and up. For further details please refer to the Operation Manual, Appendix A.

Airwell

1.4 Outdoor Unit

The DCI outdoor units can be installed as floor or wall mounted by using a wall supporting bracket. The metal sheets are protected by anti- corrosion paint work allowing long life resistance. All outdoor units are pre-charged. For further information please refer to the Product Data Sheet, Chapter 2.

- GC 24 Z
- GC 30

Outdoor Unit Feature

Feature	GC 24 Z, GC 30 DCI
Display	3 LED`s
Outdoor Fan	Variable speed DC Inverter
M2L cable Port	No

1.5 Tubing Connections

Flare type interconnecting tubing to be produced on site. For further details please refer to the Installation Manual,

1.6 Inbox Documentation

Each unit is supplied with its own installation and operation manuals.

1.7 Matching Table

1.7.1 R410A

	INDOOR UNITS			
ουτdoo				
	MODEL	REFRIGER.	KXL 24 DCI	KXL 30 DCI
	GC 24 Z	R410A	\checkmark	
	GC 30	R410A		\checkmark

The above table lists outdoor units and KXL DCI indoor units which can be matched together. In addition the listed outdoor units can be matched with other types of indoor units such as cassettes, floor/ceiling.

For further information please refer to the relevant Service Manual.

2. PRODUCT DATA SHEET

2.1 KXL 24 DCI / GC 24 Z DCI R410A

Мо	del Indoor Unit		KLX 2	4 DCI		
Model Outdoor Unit				GC 24 Z DCI R410A		
	Installation Method of Pipe			Fla		
	racteristics		Units	Cooling	Heating	
			Btu/hr	24570(5120-27300)	27300(5120-30030)	
	Capacity ⁽¹⁾			7.20(2.50-8.00)	8.00(2.50~8.80)	
	er input ⁽¹⁾		kW	2.39(0.60-2.75)	2.22(0.50~2.50)	
	(Cooling) or COP(Heating) ⁽¹⁾		W/W	3.01	3.63	
Ener	gy efficiency class			B A		
			V	220-		
Pow	er supply		Ph	Single		
			Hz	50		
	d current		A	10.5	9.7	
-	er factor			0.97	0.97	
	ed (IDU)		W	14	-	
	ed (IDU+ODU)		W	30		
	ing current		A	1		
Circi	uit breaker rating		A	2		
	Fan type & quantity			Centifu		
	Fan speeds	H/M/L	RPM	740/70		
	Air flow ⁽²⁾	H/M/L	m3/hr	1230/1120/980		
	External static pressure	Min	Pa	0 61/59/56		
	Sound power level ⁽³⁾	H/M/L H/M/L	dB(A)	\$		
ЛR	Sound pressure level ⁽⁴⁾ H/M/L Moisture removal		dB(A)	52/50/47		
NDOOR			-	2.5		
Z	Condenstate drain tube I.D		mm	<u> </u>		
	Dimensions WxHxD		mm	3		
	Net Weight Package dimensions	WxHxD	kg mm	1011x9		
	Packaged weight		kg	4		
	Units per pallet		units	4		
	Stacking height		units	6 levels		
	Refrigerant control		dinto	EEV		
	Compressor type,model			Two Rotary,Sanyo(She		
	Fan type & quantity			Propeller		
	Fan speeds	Н	RPM	850		
	Air flow	Н	m3/hr	36	00	
	Sound power level	Н	dB(A)	6	6	
	Sound pressure level (4)	Н	dB(A)	5		
	Dimensions	WxHxD	mm	950x83	5x412	
R	Net Weight	·	kg	64	.5	
ğ	Package dimensions	WxHxD	mm	1080x9	10x477	
оитроо	Packaged weight		kg	7	2	
б	Units per pallet		Units	4		
	Stacking height		units	2 lev		
	Refrigerant type			R41		
	Standard charge		kg(7.5m)	2.3		
	Additional charge			7.5m≤Length≤20m:+0g; 2		
		Liquid line	In.(mm)	3/8"(
	Connections between units	Suction line	In.(mm)	5/8"(1		
		Max.tubing length	m.	3		
-		Max.height difference	m.	15		
	ration control type			Remote	control	
	ing elements		kW			
Othe	ITS					

(1) Rating conditions in accordance with ISO 5151 and ISO 13253 (for ducted units).

(2) Airflow in ducted units; at nominal external static pressure.

(3) Sound power in ducted units is measured at air discharge.

(4) Sound pressure level measured at 1 meter distance from unit.

2.2 KXL 30 DCI / GC 30 DCI

Mode	el Indoor Unit		KXL 3	0 DCI		
Mode	el Outdoor Unit		GC 30 DCI			
Installation Method of Pipe				Flared		
Characteristics			Units	Cooling	Heating	
		Btu/hr	27280(6800~30000)	30690(5110~34100)		
Capad	Capacity ⁽¹⁾		kW	8.0(2.0-8.8)	9.0(2.5~10.0)	
Powe	r input ⁽¹⁾		kW	2.65(0.5-3.2)	2.60(0.5~3.1)	
EER (Cooling) or COP(Heating) ⁽¹⁾		W/W	3.01 3.46		
Energ	y efficiency class			В	В	
Power	- supply		V/Ph/Hz	220-240V/S	Single/50Hz	
Rated	current		A	12.5	12.3	
	ng current		A	1		
Circui	breaker rating		A	2		
	Fan type & quantity	r		Centrifu	-	
	Fan speeds	H/M/L	RPM	580/540/500	580/540/500	
	Air flow ⁽²⁾	H/M/L	m3/hr	1200/1100/1000	1270/1170/1070	
	External static pressure	Min-Max	Pa	(
	Sound power level ⁽³⁾	H/M/L	dB(A)	53/5		
К	Sound pressure level ⁽⁴⁾	H/M/L	dB(A)	46/4		
NDOOR	Moisture removal		l/hr	3		
Z	Condenstate drain tube I.D		mm	1		
	Dimensions	WxHxD	mm	840*84		
	Weight	MULED	kg	4		
	Package dimensions WxHxD		mm	1011*931*333 54		
	Packaged weight		kg units	5		
	Units per pallet Stacking height		units	5 le		
	Refrigerant control		units	EE		
	Compressor type,model		+	Two Rotary,Mits		
	Fan type & quantity			Propeller(direct) x 1		
	Fan speeds	H/L	RPM	850		
	Air flow	H/L	m3/hr	36		
	Sound power level	H/L	dB(A)	6		
	Sound pressure level ⁽⁴⁾	H/L	dB(A)	5	6	
	Dimensions	WxHxD	mm	950x41	2x835	
~	Weight		kg	6	6	
OR	Package dimensions	WxHxD	mm	1080x477x910		
l d	Packaged weight		kg	73	.5	
ουτρο	Units per pallet		Units	2		
	Stacking height		units	2 le		
	Refrigerant type			R42		
	Refrigerant chargless distant		kg/m	2.75kg		
	Additional charge per 1 meter		g/m	No N		
		Liquid line	ln.(mm)	3/8"(9.53)	
	Opens offers to the second of the	Suction line	ln.(mm)	5/8"(1	5.88)	
	Connections between units	Max.tubing length	m.	Мах	c.30	
		Max.height difference	m.	Мах		
Opera	tion control type	<u> </u>		Remote control		
	ing elements (Option)		kW			
Othe						

(1) Rating conditions in accordance with ISO 5151 and ISO 13253 (for ducted units).

(2) Airflow in ducted units; at nominal external static pressure.

(3) Sound power in ducted units is measured at air discharge.

(4) Sound pressure level measured at 1 meter distance from unit.

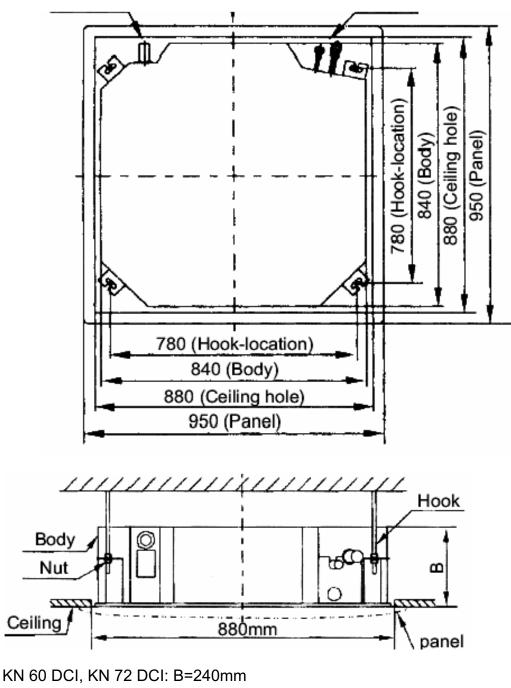
3. RATING CONDITIONS

Standard conditions in accordance with ISO 5151 and ISO 13253 (for ducted units) and EN 14511.

Cooling:

Indoor: 27°C DB 19°C WB Outdoor: 35°C DB

Heating:

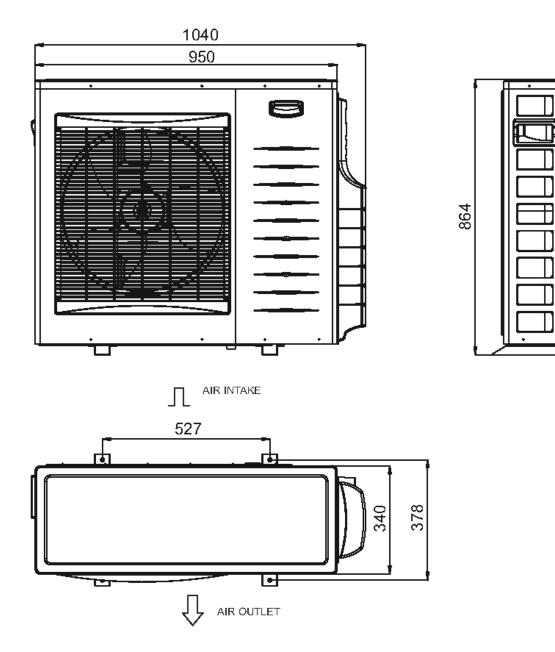

Indoor: 20°C DB Outdoor: 7°C DB 6°C WB

3.1 Operating Limits

		Indoor	Outdoor	
Cooling	Upper limit	32°C DB 23°C WB	46°C DB	
Cooling	Lower limit	21°C DB 15°C WB	-10°C DB	
	Upper limit	27°C DB	24°C DB 18°C WB	
Heating	Lower limit	10°C DB	-15°C DB -16°C WB	
Valtara	1PH	198 – 264V		
Voltage	3PH	N/A		

4. OUTLINE DIMENSIONS

4.1 Indoor Unit: KLX 24, KLX 30 DCI



KN 80 DCI: B=310mm

Remark: KN 60 DCI is the same as KN 72 DCI

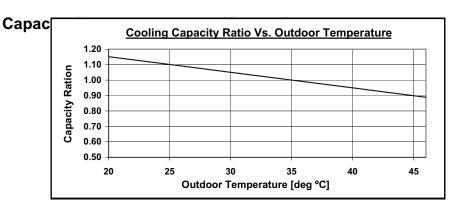
P

4.2 Outdoor Unit: GC 24 Z DCI, GC 30 DCI

5. PERFORMANCE DATA & PRESSURE CURVES

5.1 KXL 24 DCI / GC 24 Z DCI

5.1.1 Cooling Capacity (kW)

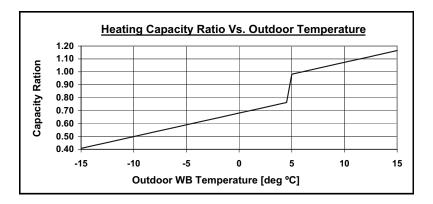

		ID COIL E		AIR DB/WB	TEMPERAT	URE [Cº]
OD COIL ENTERING AIR DB TEMPERATURE [C ⁰]	DATA	22/15	24/17	27/19	29/21	32/23
-10 - 20	TC		- 80	110 % of nor	minal	
(protection range)	SC		- 80	105 % of nor	minal	
	PI		25 -	50 % of non	ninal	
	TC	7.09	7.51	7.93	8.34	8.76
25	SC	6.09	6.19	6.28	6.37	6.46
	PI	1.81	1.85	1.89	1.93	1.97
	TC	6.73	7.15	7.56	7.98	8.40
30	SC	5.86	5.95	6.04	6.13	6.22
	PI	2.06	2.10	2.14	2.18	2.22
	тс	6.36	6.78	7.20	7.62	8.04
35	SC	5.62	5.71	5.80	5.89	5.98
	PI	2.31	2.35	2.39	2.43	2.47
	тс	6.00	6.42	6.84	7.25	7.67
40	SC	5.28	5.47	5.56	5.65	5.74
	PI	2.56	2.60	2.64	2.68	2.72
	TC	5.56	5.98	6.40	6.82	7.24
46	SC	5.10	5.19	5.28	5.27	5.46
	PI	2.86	2.90	2.94	2.98	3.02

LEGEND

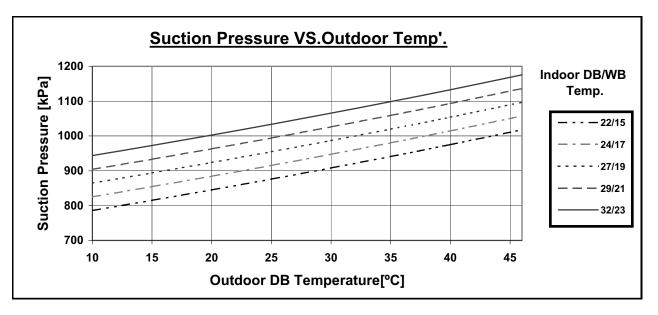
TC –	Total Cooling Capacity, kW
------	----------------------------

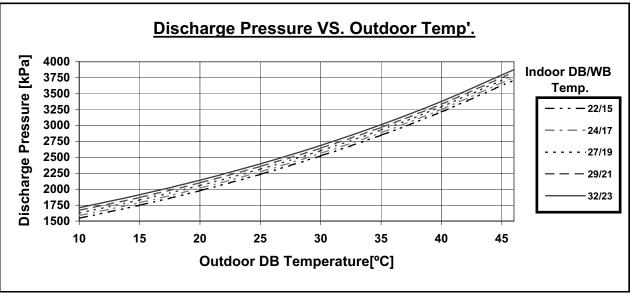
- SC Sensible Capacity, kW
- PI Power Input, kW
- WB Wet Bulb Temp., (°C)
- DB Dry Bulb Temp., (°C)
- ID Indoor
- OD Outdoor

5.1.2

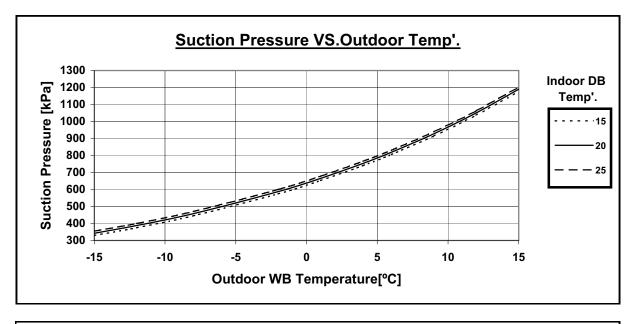

		ID COIL ENTERING AIR DB TEMPERATURE [C ⁰]				
OD COIL ENTERING AIR DB/WB TEMPERATURE [Cº]	DATA	15	20	25		
-15/-16	TC	3.64	3.12	2.59		
-15/-10	PI	1.55	1.66	1.77		
-10/-12	TC	4.81	4.28	3.76		
-10/-12	PI	1.75	1.87	1.98		
-7/-8	TC	5.68	5.16	4.63		
-77-0	PI	1.91	2.02	2.13		
-1/-2	TC	6.12	5.59	5.07		
-1/-2	PI	1.98	2.09	2.20		
2/1	TC	6.41	5.88	5.26		
2/1	PI	2.03	2.14	2.26		
7/6	TC	8.52	8.00	7.48		
1/0	PI	2.11	2.22	2.33		
10/0	TC	8.97	8.44	7.92		
10/9	PI	2.15	2.26	2.37		
15/10	TC	9.41	8.88	8.36		
15/12	PI	2.19	2.30	2.41		
15-24	TC	85 - 105 % of nominal				
(Protection Range)	PI	80 - 120 % of nominal				

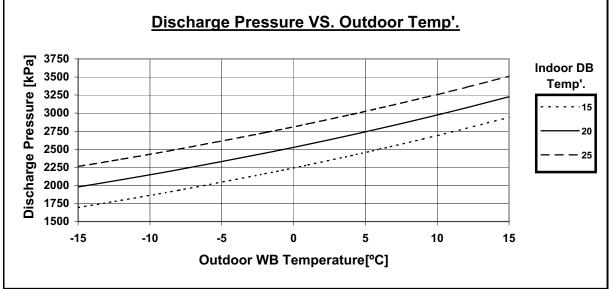
5.1.3 Heating

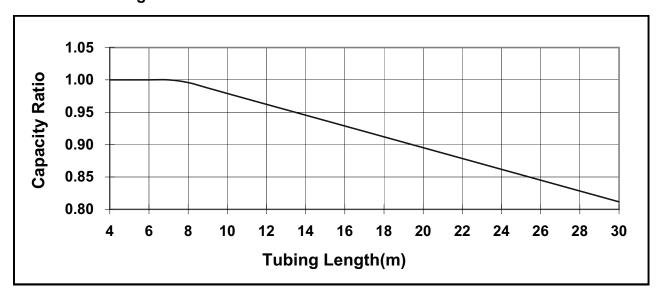

LEGEND


- TH Total Heating Capacity, kW
- PI Power Input, kW
- WB Wet Bulb Temp., (°C)
- DB Dry Bulb Temp., (°C)
- ID Indoor
- OD Outdoor

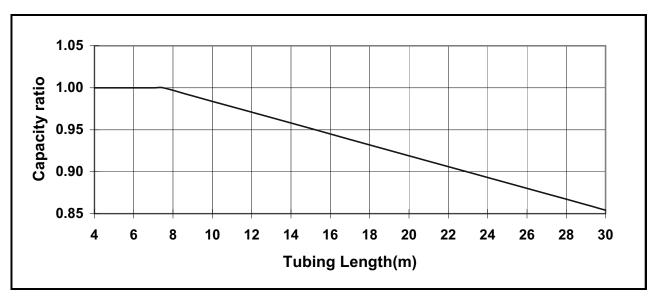
5.1.4 Capacity Correction Factors (Heating)


5.1.5 Pressure Curves (Cooling – Test Mode)





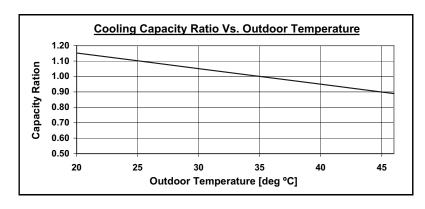
5.1.6 Pressure Curves (Heating – Test Mode)



5.1.7 Capacity Correction Factor Due to Tubing Length Cooling

Heating

5.2 KLX 30 DCI / GC 30 DCI

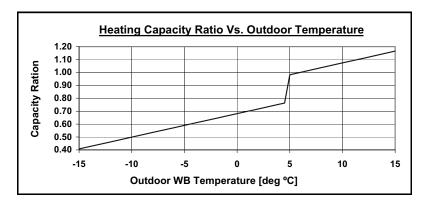

5.2.1 Cooling Capacity (kW)

		ID COIL	ENTERING	AIR DB/WB	FEMPERATU	IRE [C⁰]
OD COIL ENTERING AIR DB TEMPERATURE [Cº]	DATA	22/15	24/17	27/19	29/21	32/23
10 00	тс		80 -	110 % of nor	ninal	
-10 - 20 (protection renge)	SC		80 -	105 % of nor	ninal	
(protection range)	PI		25 -	50 % of nom	ninal	
	тс	7.88	8.34	8.81	9.27	9.74
25	SC	6.41	6.51	6.60	6.70	6.79
	PI	2.00	2.05	2.09	2.14	2.18
	тс	7.48	7.94	8.40	8.87	9.33
30	SC	6.16	6.25	6.35	6.45	6.54
	PI	2.28	2.33	2.37	2.42	2.46
	тс	7.07	7.54	8.00	8.46	8.93
35	SC	5.91	6.00	6.10	6.20	6.29
	PI	2.56	2.60	2.65	2.70	2.74
	тс	6.67	7.13	7.60	8.06	8.52
40	SC	5.66	5.75	5.85	5.95	6.04
	PI	2.84	2.88	2.93	2.97	3.02
	TC	6.18	6.65	7.11	7.58	8.04
46	SC	5.26	5.45	5.55	5.64	5.74
	PI	3.17	3.22	3.26	3.31	3.35

LEGEND

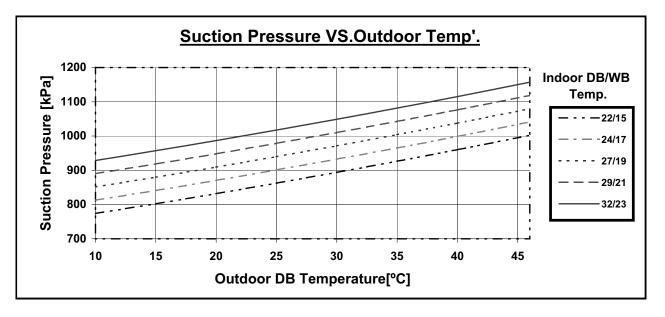
- TC Total Cooling Capacity, kW
- SC Sensible Capacity, kW
- PI Power Input, kW
- WB Wet Bulb Temp., (°C)
- DB Dry Bulb Temp., (°C)
- ID Indoor
- OD Outdoor

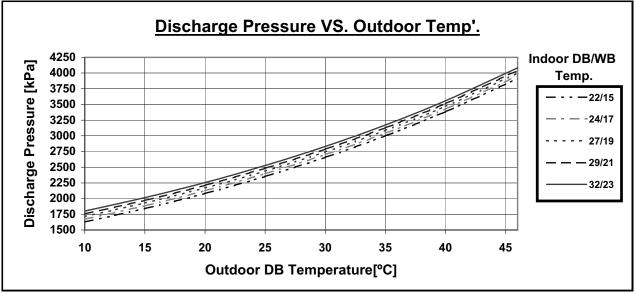
5.2.2 Capacity Correction Factors (Cooling)

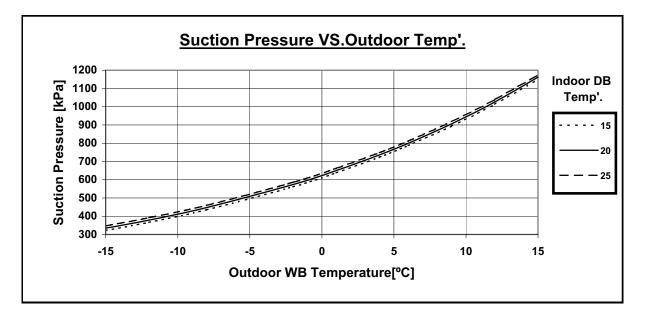

		ID COIL ENTERIN	NG AIR DB TEMPE	RATURE [Cº]	
OD COIL ENTERING AIR DB/WB TEMPERATURE [Cº]	DATA	15	20	25	
-15/-16	TC	4.10	3.51	2.92	
-15/-10	PI	1.82	1.95	2.08	
-10/-12	TC	5.41	4.82	4.23	
-10/-12	PI	2.06	2.19	2.32	
-7/-8	TC	6.39	5.80	5.21	
-77-0	PI	2.23	2.36	2.49	
-1/-2	TC	6.88	6.29	5.70	
-1/-2	PI	2.32	2.45	2.58	
2/1	TC	7.21	6.62	6.03	
2/1	PI	2.38	2.51	2.64	
7/6	TC	9.59	9.00	8.41	
7/6	PI	2.47	2.60	2.73	
10/9	TC	10.09	9.50	8.91	
10/9	PI	2.52	2.65	2.78	
15/10	TC	10.58	9.99	9.40	
15/12	PI	2.57	2.70	2.83	
15-24	TC	85 - 105 % of nominal			
(Protection Range)	PI	80 - 120 % of nominal			

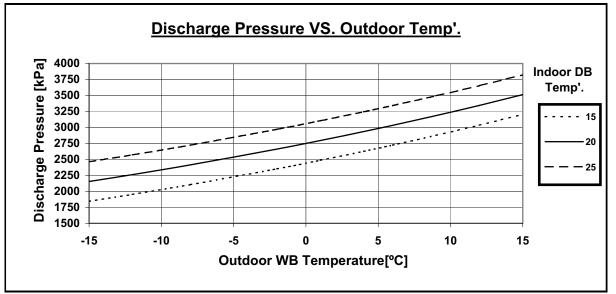
5.2.3 Heating

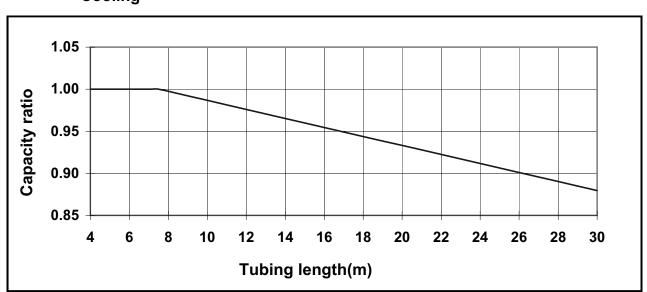
LEGEND


- TH Total Heating Capacity, kW
- PI Power Input, kW
- WB Wet Bulb Temp., (°C)
- DB Dry Bulb Temp., (°C)
- ID Indoor
- OD Outdoor

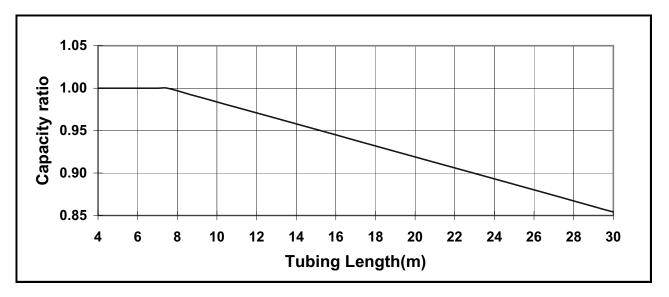

5.2.4 Capacity Correction Factors (Heating)



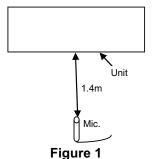

5.2.5 Pressure Curves (Cooling – Test Mode)

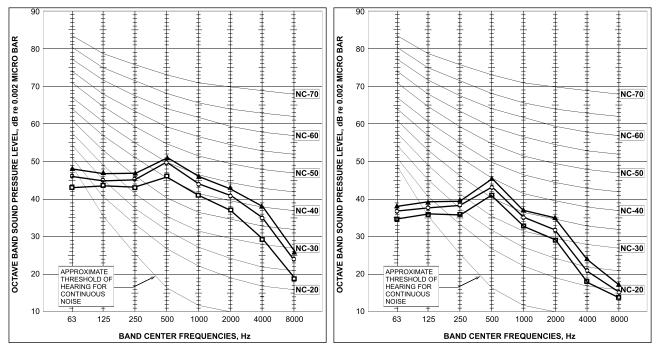


5.2.6 Pressure Curves (Heating – Test Mode)



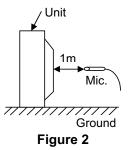
5.2.7 Capacity Correction Factor Due to Tubing Length Cooling

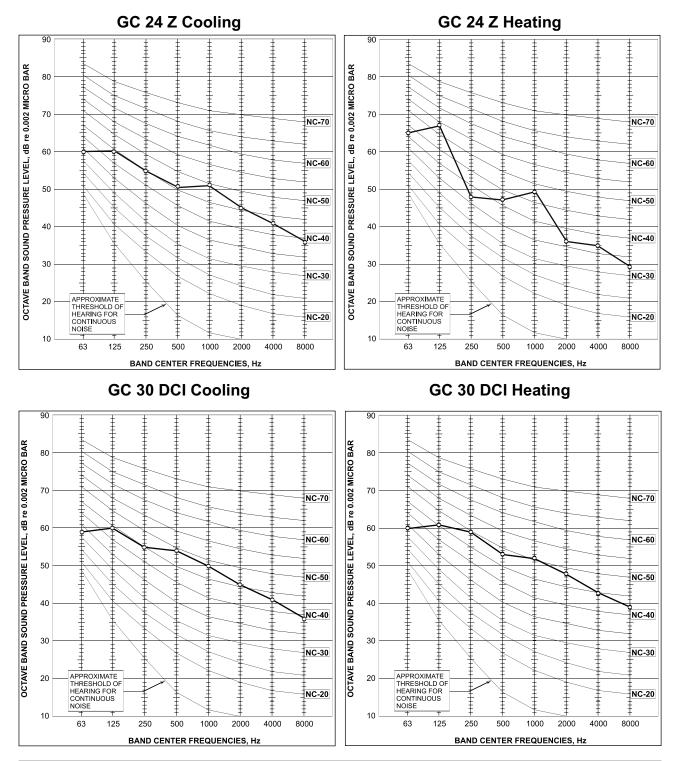

Heating


Airwell

6 SOUND LEVEL CHARACTERISTICS

6.1 Sound Pressure Level


6.2 Soud Pressure Level Spectrum (Measured as Figure 1) KLX 24 DCI KLX 30 DCI


FAN SPEED	LINE
HI	
ME	— —
LO	╞

Airwell

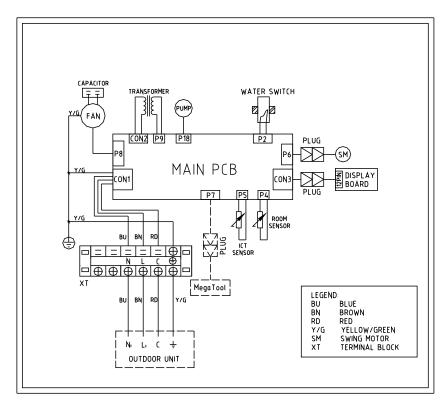
6.3 Outdoor units

6.4 Sound Pressure Level Spectrum (Measured as Figure 2)

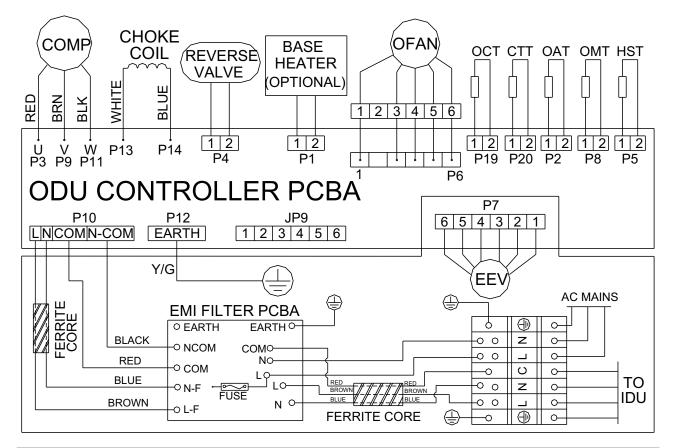
7. ELECTRICAL DATA

7.1 Single Phase Units

Model	KLX 24 DCI	KLX 30 DCI		
Power Supply	1PH, 220-240VAC, 50HZ			
Connected to	Indoor			
Starting Current ^(a)	15A			
Circuit Breaker		20A		
Power Supply Wiring no x cross section	3 X 2.5 mm ²			
Interconnecting cable no x cross section	4 X 2.5 mm ²			

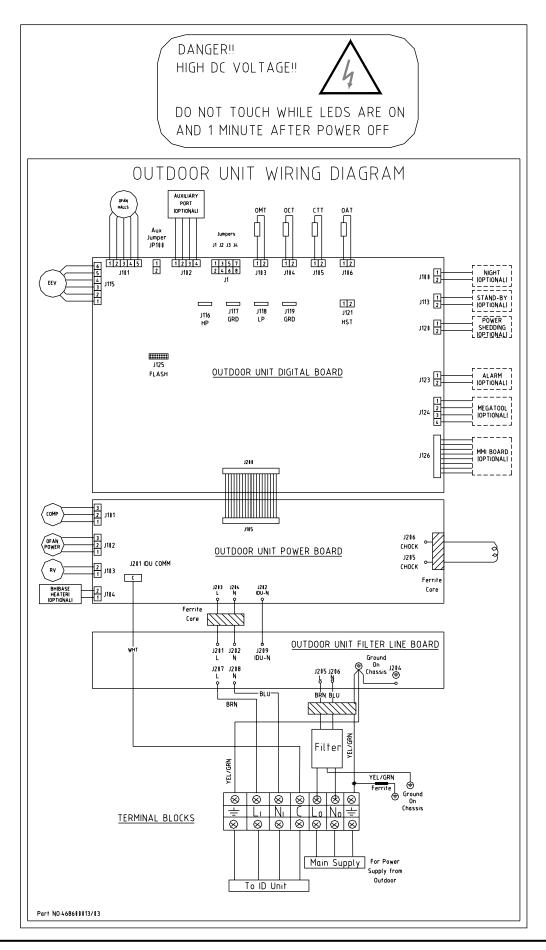

(a) Starting current is the current when starting the compressor.

NOTE:

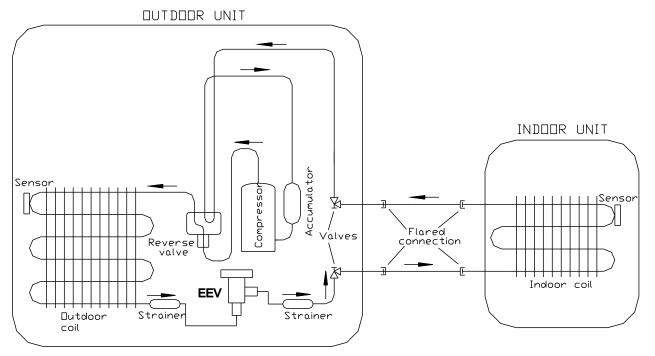

Power wiring cord should comply with local lows and electrical regulations requirements.

8. WIRING DIAGRAMS

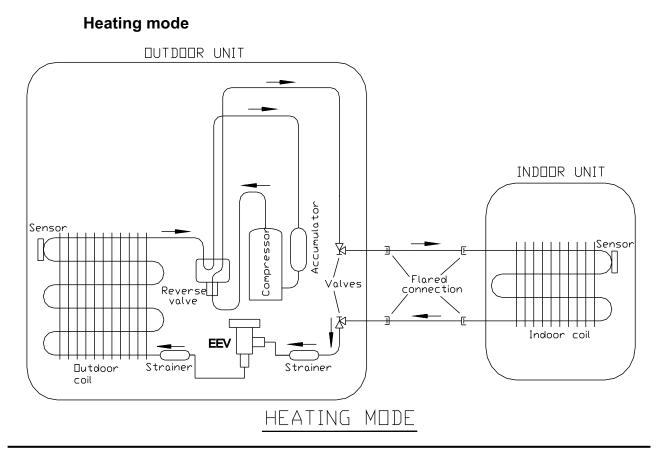
8.1 Indoor Unit: KLX 24, KLX 30 DCI



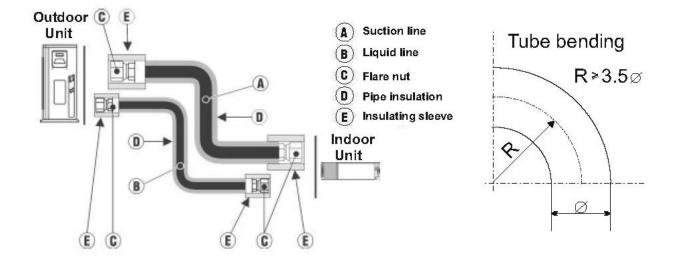
8.2 Outdoor Unit: GC 24 Z DCI

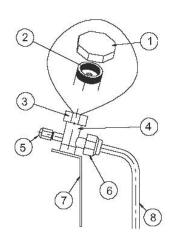

Airwell

8.3 Outdoor Unit: GC 30 DCI



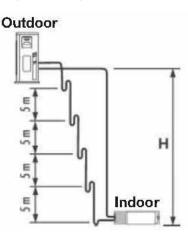
- 9. **REFRIGERATION DIAGRAMS**
- 9.1 Heat Pump Models
- 9.1.1 KLX 24, KLX 30 DCI


Cooling mode



COOLING & DRY MODE

10. TUBING CONNECTIONS



TUBE (Inch)	¹ /4"	^{3/8} "	¹ /2"	⁵ /8"	³ /4"
TORQUE (Nm)					
Flare Nuts	15-18	40-45	60-65	70-75	80-85
Valve Cap	13-20	13-20	18-25	18-25	40-50
Service Port Cap	11-13	11-13	11-13	11-13	11-13

- 1. Valve Protection Cap-end
- 2. Refrigerant Valve Port (use Allen wrench to open/close)
- 3. Valve Protection Cap
- 4. Refrigerant Valve
- 5. Service Port Cap
- 6. Flare Nut
- 7. Unit Back Side
- 8. Copper Tube

When the outdoor unit is installed above the indoor unit an oil trap is required every 5m along the suction line at the lowest point of the riser. Incase the indoor unit is installed above the outdoor, no trap is required.

*Applicable for DNG18 only, for DNG24 – 44 oil traps are not required.

11. TROUBLESHOOTING

11.1 Troubleshooting for GC 24 Z DCI

WARNING!!!

When Power Up – the whole outdoor unit controller, including the wiring, is under HIGH VOLTAGE!!! Never open the Outdoor unit before turning off the Power!!! When turned off, the system is still charged (400V)!!! It takes about 3 Min. to discharge the system. Touching the controller before discharging may cause an electrical shock!!!

11.1.1 Single Split System failures and Corrective Actions

No	Symptom	Probable Cause	Corrective Action
1	Power supply indicator (Red LED) does not light up.	No power supply	Check power supply. If power supply is OK, check display and display wiring. if OK, replace controller.
2	Unit does not respond to remote control message	Remote control message not reached the indoor unit	Check remote control batteries, if batteries are OK, check display and display wiring, if OK, replace display PCB. If still not OK replace controller.
3	Unit responds to remote control message but Operate indicator (Green LED) does not light up	Problem with display PCB	Replace display PCB. If still not OK replace controller.
		Unit in heat mode and coil is still not warm.	Change to cool mode and check.
4	Indoor fan does not start (louvers are opened and Green LED does light up)	Problem with PCB or capacitor	Change to high speed and Check power supply to motor is higher than 130VAC (for triack controlled motor) or higher than 220VAC for fixed speed motors, if OK replace capacitor, if not OK replace controller.
5	Indoor fan works when unit is OFF, and indoor fan speed is not changed by remote control command.	PCB problem	Replace controller
6	Compressor does not start	Electronics control problem or protection	Perform diagnostics and follow the actions described.
7	Compressor stops during operation and Green LED remains on	Electronic control or power supply problem	Perform diagnostics and follow the actions described.
8	Compressor is on but outdoor fan does not work	Problem with outdoor electronics or outdoor fan	Check outdoor fan motor according to the procedure below, if not OK replace controller.

No	Symptom	Probable Cause	Corrective Action
9	Unit works in wrong mode (cool instead of heat or heat instead of cool)	Electronics or power connection to RV	Check RV power connections, if OK, check RV operation with direct 230VAC power supply, if OK, replace outdoor controller.
10	All components are operating properly but no cooling or no heating	Refrigerant leak	Check refrigeration system.
11	Compressor is over heated and unit does not generate capacity	EEV problem	Check EEV.
12	Units goes into protections and compressor is stopped with no clear reason	Control problem or refrigeration system problem	Perform diagnostics , and follow the actions described.
13	Compressor motor is generating noise and no suction occurs	Phase order to compressor is wrong	Check compressor phase order.
14	Water leakage from indoor unit	Indoor unit drainage tube is blocked	Check and open drainage tube.
15	Freezing of outdoor unit in heat mode and outdoor unit base is blocked with ice		Connect base heater.
16	Unit operates with wrong fan speeds or wrong frequency	Wrong jumper settings	Perform diagnostics, and check if units is operating by EEPROM parameters.

11.1.2 Checking the refrigeration system

Checking system pressures and other thermodynamic measures should be done when system is in Test Mode (in Test mode, system operates in fixed settings). The performance curves given in this manual are given for unit performance in test mode when high indoor fan speed is selected. Entering test mode:

Set unit to Cool/16 degrees/High indoor fan speed, or Heat/30 degrees/High indoor fan speed, and enter diagnostics.

11.1.3 Judgment by Indoor/Outdoor Unit Diagnostics

Enter diagnostics mode - press for five seconds Mode button in any operation mode. Acknowledgment is by 3 short beeps and lights of COOL and HEAT LED's. Then, every short pressing of Mode button will scroll between Indoor and Outdoor unit diagnostic modes by the acknowledgment of 3 short beeps and lighting of COOL and HEAT LED's.

During the Outdoor unit diagnostics all four Indoor LED's (STBY, Operate, Filter and Timer) are blinking. When Indoor diagnostics is displayed, all four LED's (STBY, Operate, Filter and Timer) are ON.

When system enters diagnostics mode, only one fault code is shown. Order of priority is from the lower to the higher number. Diagnostics is continuously ON as long as power is ON. The current system operation mode will not be changed.

If no fault occurred in the system, no fault code will be displayed during normal operation mode. The last fault code will be displayed even if the system has recovered from that fault. The last fault will be deleted from the EEPROM after the system has exit diagnostics mode.

In diagnostics mode, system fault / status will be indicated by blinking of Heat & Cool LEDs. The coding method will be as follows:

Heat LED will blink 5 times in 5 seconds, and then will be shut off for the next 5 seconds. Cool LED will blink during the same 5 seconds according to the following Indoor / Outdoor unit tables: Note: 0 - OFF, 1-ON

No	Problem	5	4	3	2	1
1	RT-1 is disconnected	0	0	0	0	1
2	RT-1 is shorted	0	0	0	1	0
3	RT-2 is disconnected	0	0	0	1	1
4	RT-2 is shorted	0	0	1	0	0
5	Reserved	0	0	1	0	1
7	Communication mismatch	0	0	1	1	1
8	No Communication	0	1	0	0	0
9	No Encoder	0	1	0	0	1
10	Reserved	0	1	0	1	0
11	Outdoor Unit Fault	0	1	0	1	1
	Reserved					
17	Defrost protection	1	0	0	0	1
18	Deicing Protection	1	0	0	1	0
19	Outdoor Unit Protection	1	0	0	1	1
20	Indoor Coil HP Protection	1	0	1	0	0
21	Overflow Protection	1	0	1	0	1
22	Reserved					
24	EEPROM Not Updated	1	1	0	0	0
25	Bad EEPROM	1	1	0	0	1
26	Bad Communication	1	1	0	1	0
27	Using EEPROM data	1	1	0	1	1
28	Model A	1	1	1	0	0
29	Model B	1	1	1	0	1
30	Model C	1	1	1	1	0
31	Model D	1	1	1	1	1

11.1.4 Indoor Unit Diagnostics

11.1.4.1 Indoor Unit Diagnostics and Corrective Actions

No.	Fault	Probable Cause	Corrective Action
1	Sensor failures of all types		Check sensor connections or replace sensor
2	Communication mismatch	Indoor and Outdoor controllers are with different versions	Replace Indoor controller
3	No Communication	Communication or grounding wiring is not good.	Check Indoor to Outdoor wiring and grounding
4	No Encoder	Indoor electronics or motor	Check motor wiring, if ok, replace motor, if still not ok, replace Indoor controller.
5	Outdoor Unit Fault	Outdoor controller problem	Switch to Outdoor diagnostics.
6	EEPROM Not Updated	System is using ROM parameters and not EEPROM parameters	No action, unless special parameters are required for unit operation.
7	Bad EEPROM		No action, unless special parameters are required for unit operation.
8	Bad Communication	Communication quality is low reliability	Check Indoor to Outdoor wiring and grounding
9	Using EEPROM data	No problem. System is using EEPRRRROM parameters	
10	The power supply indicator (red led) doesn't light up.	There is no correct voltage between the line and neutral terminals on main P.C.B.	 -If the voltage is low repair power supply. -If there is no voltage repair general wiring. -If there is correct voltage replace main or display P.C.B'S
11	TThe operating indicator (green led) does not light up	The remote control batteries are discharged	-Replace batteries of the remote control
12	The operating indicator (green led) does not light up when starting from unit	Check main P.C.B and display P.C.B.	-Replace P.C.B if necessary.
13	The indoor fan does not function correctly.	Check the voltage between indoor fan terminals on the main P.C.B	- If there is voltage replace capacitor or motor.

No.	Fault	Probable Cause	Corrective Action
		Check the voltage between indoor fan terminals on the main P.C.B.	- If there is no voltage replace main P.C.B
14	The outdoor fan does not function correctly.	There is voltage between outdoor fan terminals on the outdoor unit.	- Replace capacitor or motor.
		There is no voltage between outdoor fan terminals on the outdoor unit.	- Check and repair electrical wiring between indoor and outdoor units.
		Check voltage on	-If no voltage replace main P.C.B.
	The compressor	compressor terminals on the outdoor unit. (with ampmeter) Check if there is correct voltage between	 If low voltage repair power supply.
15	does not start up.		-If the voltage corrrect replace capacitor or compressor.
		compressor terminals on the outdoor unit.	-If there is no voltage repair electrical wiring between indoor and outdoor units.
16	The refrigeration system does not function correctly.	Check for leaks or restrictions, with ampmeter, pressure guage or surface thermometer.	- Repair refrigeration system and charge refrigerant if necessary.
	No cooling or	Outdoor fan motor faulty or other fault caused,	-Replace P.C.B.
17	heating only indoor fan works.	compresssor overload protection cut out.	- Outdoor fan blocked remove obstructions.
18	Only indoor fan and compressor working.	Outdoor fan blocked.	- Remove obstructions.
19	Only indoor fan	-Run capacitor of outdoor fan motor faulty.	- Replace capacitor.
	working.	-Windings of outdoor fan are shorted.	-Replace motor.

No.	Fault	Probable Cause	Corrective Action
	No cooling or heating takes	- Overload safety device on compressor is cut out (low voltage or high temperature)	- Check for proper voltage, switch off power and try again after one hour.
20	place, indoor and outdoor fans working.	- Compressor run capacitor faulty.	- Replace compressor capacitor.
		- Compressor windings are shorted.	- Replace compressor.
	No air supply	-Indoor fan motor is blocked or turns slowly.	- Check voltage,repair wiring if necessary.
21	at indoor unit, compressor operates.	 -indoor fan run capacitor faulty. - motor windings are shorted. 	-Check fan wheel if it is tight enough on motor shaft,tighten if necessary.
			-Replace indoor fan motor.
22	Partial, limited air supply at indoor indoor unit.	Lack of refrigerant (will accompanied by whisteling noise) cause ice formation on indoor unit coil in cooling mode.	-Charge the unit after localizing leak.
23	Water accumulates and overflow from indoor unit section.	Drain tube or spout of drain pan clogged.	-Disasemble plastic drain tube from spout of indoor unit drain pan.
24	Water dripping from outdoor unit base. (in heating mode)	Water drain outlet is clogged.	-Open outdoor unit cover clean out water outlet ,clean the base inside througly.
		-Faulty outdoor thermistor.	-Replace thermistor.
	Freeze-up of outdoor coil in	-Faulty control cable.	- Repair control cable.
25	heating mode, poor heating effect in room, indoor fan	- Outdoor temperature is too low (below -2°C)	- Shut unit off, outdoor temp. is below design conditions and cannot function properly.
	operates.	-Outdoor unit air outlet is blocked.	-Remove obstructions.

11.1.5 Outdoor Unit Diagnosits

No	Problem	5	4	3	2	1
1	OCT is disconnected	0	0	0	0	1
2	OCT is shorted	0	0	0	1	0
3	CTT is disconnected	0	0	0	1	1
4	CTT is shorted	0	0	1	0	0
5	HST is disconnected (when enabled)	0	0	1	0	1
6	HST is shorted (when enabled)	0	0	1	1	0
7	OAT is disconnected (when enabled)	0	0	1	1	1
8	OAT is shorted (when enabled)	0	1	0	0	0
9	TSUC is disconnected (when enabled)	0	1	0	0	1
10	TSUC is shorted (when enabled)	0	1	0	1	0
11	IPM Fault	0	1	0	1	1
12	Bad EEPROM	0	1	1	0	0
13	DC under voltage	0	1	1	0	1
14	DC over voltage	0	1	1	1	0
15	AC under voltage	0	1	1	1	1
16	Indoor / Outdoor unit Communication mismatch	1	0	0	0	0
17	No Communication	1	0	0	0	1
18	Reserved	1	0	0	1	0
20	Heat sink Over Heating	1	0	1	0	0
21	Deicing	1	0	1	0	1
22	Compressor Over Heating	1	0	1	1	0
23	Compressor Over Current	1	0	1	1	1
24	No OFAN Feedback	1	1	0	0	0
25	OFAN locked	1	1	0	0	1
26	Compressor Lock	1	1	0	1	0
27	Bad Communication	1	1	0	1	1

11.1.5.1 Outdoor Unit Diagnostics and Corrective Actions

No	Fault	Probable Cause	Corrective Action
1	Sensors failures of all types		Check sensors connec- tions or replace sensors.
2	IPM Fault	Electronics HW prob- lem	Check all wiring and jumper settings, if OK, replace electronics.
3	Bad EEPROM		No action, unless special parameters are required for unit operation.
4	DC under/over Voltage	Electronics HW prob- lem	Check outdoor unit pow- er supply voltage
5	AC under Voltage		Check outdoor unit pow- er supply voltage
6	Indoor / Outdoor unit Communication mis- match	Indoor and Outdoor controllers are with different versions	Replace Indoor controller
7	No Communication	Communication or grounding wiring is not good.	Check Indoor to Outdoor wiring and grounding
8	Compressor Lock		Switch unit to STBY and restart
9	Bad Communication	Communication quality is low reliability	Check Indoor to Outdoor wiring and grounding

Airwell

11.1.6 Judgment by MegaTool

MegaTool is a special tool to monitor the system states.

Using MegaTool requires:

A computer with RS232C port.

A connection wire for MegaTool.

A special MegaTool software.

Use MegaTool according to following procedure:

Setup MegaTool software: copy the software to the computer.

Connect RS232C port in computer with MegaTool port in Indoor/Outdoor unit controller by the connection wire.

Run the software and choose the COM port, you can monitor the A/C system state In monitor tab

11.1.7 Simple procedures for checking the Main Parts

11.1.7.1 Checking Mains Voltage.

Confirm that the Mains voltage is between 198 and 264 VAC. If Mains voltage is out of this range, abnormal operation of the system is expected. If in range check the Power (Circuit) Breaker and look for broken or loosed cable lugs or wiring mistake(s).

11.1.7.2 Checking Power Input.

If Indoor unit power LED is unlighted, power down the system and check the fuse of the Indoor unit. If the fuse is OK replace the Indoor unit controller. If the fuse has blown, replace the fuse and power up again.

Checking Power Input procedure for the Outdoor unit is the same as with the Indoor unit.

11.1.7.3 Checking the Outdoor Fan Motor.

Enter Test Mode (where the OFAN speed is high) Check the voltage between lead wires according to the normal value as following: Between red wire and black wire: 310VDC +/- 20V Between orange wire and black wire: 15VDC +/- 1V Between yellow wire and black wire: 2-6VDC

11.1.7.4 Checking the Compressor.

The compressor is brushless permanence magnetic DC motor. Three coil resistance is same. Check the resistance between three poles. The normal value should be below 0.5 ohm (TBD).

11.1.7.5 Checking the Reverse Valve (RV).

Running in heating mode, check the voltage between two pins of reverse valve connector, normal voltage is 220VAC.

11.1.7.6 Checking the electrical expansion valve (EEV).

The EEV has two parts, drive part and valve. The drive part is a step motor; it is ringed on the valve. Check the drive voltage (12VDC). When Outdoor unit is power on, EEV shall run and have click and vibration.

11.1.8 Precaution, Advise and Notice Items

11.1.8.1 High voltage in Outdoor unit controller.

Whole controller, including the wires that are connected to the Outdoor unit controller may have the potential hazard voltage when power is on. Touching the Outdoor unit controller may cause an electrical shock.

Advise: Don't touch the naked lead wire and don't insert finger, conductor or anything else into the controller when power is on.

11.1.9 Charged Capacitors

Three large-capacity electrolytic capacitors are used in the Outdoor unit controller. Therefore, charging voltage (380VDC) remains after power down. Discharging takes about four minutes after power is off. Touching the Outdoor unit controller before discharging may cause an electrical shock.

11.1.10 Additional advises

When disassemble the controller or the front panel, turn off the power supply.

When connecting or disconnecting the connectors on the PCB, hold the whole housing, don't pull the wire.

There are sharp fringes and sting on shell. Use gloves when disassemble the A/C units.

11.2 Troubleshooting for GC 30 DCI

WARNING!!!

When Power Up – the whole outdoor unit controller, including the wiring, is under HIGH VOLTAGE!!! Never open the Outdoor unit before turning off the Power!!! When turned off, the system is still charged (400V)!!! It takes about 1 Min. to discharge the system. Touching the controller before discharging may cause an electrical shock!!!

11.2.1 General System Failures and Corrective Actions

No	Symptom	Probable Cause	Corrective Action	
1	Indoor unit power supply indicator (Red LED) does not light up.	No power supply	Check power supply. If OK, check display and display wiring. if OK, replace controller	
2	Indoor unit does not respond to remote control message	Remote control message not reached the indoor unit	Check remote control batteries, if OK, check display and display wiring, if OK, replace display PCB. If still not OK replace controller	
3	Indoor unit responds to remote control message but Operate indicator (Green LED) does not light up	Problem with display PCB	Replace display PCB. If still not OK replace controller	
		Unit in heat mode and coil is still not warm	Change to cool mode	
		Outdoor unit is in opposite mode	Change operation mode	
4	Indoor fan does not start (louvers are opened and Green LED is ON)	Problem with controller or capacitor	Change to high speed and Check power supply to motor is higher than 130VAC (for triack controlled motor) or higher than 220VAC for fixed speed motors, if OK replace capacitor, if not OK replace controller	
5	Indoor fan works when unit is OFF, and indoor fan speed is not changed by remote control command.	Controller problem	Replace controller	
6	Water leakage from indoor unit	Indoor unit drainage tube is blocked	Check and open drainage tube	

No	Symptom	Probable Cause	Corrective Action	
7	Outdoor unit display board and	No power supply	Check the connections and the wiring on the main terminal - Repair if needed.	
'	leds are off	PFC Chock coil	Check the PFC Chock coil	
		Burnt fuse	Check 20A fuse on the Filter	
		EEV problem	Check EEV	
		Refrigerant leakage	Check refrigeration system	
8	Compressor operates but no capacity	Indoor coil block	Clean filters and/or remove block	
		Outdoor coil block	Remove block and/or avoid air by-pass	
		EEV problem	Check EEV	
		Refrigerant leakage	Check refrigeration system)	
9	Compressor is over heated and unit does not generate capacity	Indoor coil block	Clean filters and/or remove block	
		Outdoor coil block	Remove block and/or avoid air by-pass	
	Compressor stops during	Electronic control	Check diagnostics	
10	operation	Refrigerant leakage	Check refrigeration system	
11	Unit is not operating	Communication problems	Check diagnostics	
12	Compressor does not start	Electronics control problem or protection		
13	Unit works in wrong mode (cool instead of heat or heat instead of cool)	Electronics or RV problem	Check RV	
14	All components are operating properly but no cooling or no heating	Refrigerant leak	Check refrigeration system	
15	Compressor motor is generating noise and no suction occurs	Phase order to compressor is wrong	Check compressor phase order	
16	Freezing of outdoor unit in heat mode and outdoor unit base is blocked with ice		Connect base heater	
17	The unit stop suddenly during operation	EMC interference to the	Chook for EMC problems	
18	Indoor unit(s) Indicator(s) leds may flicker	A/C unit	Check for EMC problems	

No	Symptom	Probable Cause	Corrective Action
21	Other home appliances operation is faulty such as noise appears in the television picture, or the picture is distorted or static occurs in the radio sound	EMC interference by the A/C unit	Check for EMC problems
22	All others	Specific problems of indoor or outdoor units	Check diagnostics

11.2.2 Checking the refrigeration system

Checking system pressures and other thermodynamic measures should be done when system is in technician Mode where the system operates as in fixed settings. The performance curves given in this manual are given for unit performance in Technician mode when high indoor fan speed is selected.

11.2.3 Diagnostics

11.2.3.1 Outdoor unit diagnostics

If any fault exists in the system, it will be shown according to tlf no fault exists in the system, no fault code will be displayed during normal operation mode, and the status led will be on while the compressor is enable.he following coding method.

Two LEDs display the system diagnostics on real time as follows:

STATUS LED is blinking 5 times in 5 seconds, and shut off for the next 5 seconds.

FAULT LED will blink during the same 5 seconds according to the following table:

No	Problem	5	4	3	2	1
1	OCT bad	0	0	0	0	1
2	CTT bad	0	0	0	1	0
3	HST bad	0	0	0	1	1
4	OAT bad	0	0	1	0	0
5	OMT bad	0	0	1	0	1
6	RGT bad	0	0	1	1	0
7	OFAN/Compressor Feedback Loss	0	0	1	1	1
8	OFAN- IPM fault	0	1	0	0	0
9	OFAN Lock	0	1	0	0	1
10	OFAN- Vospd exceeded	0	1	0	1	0
11	Compressor- IPM Fault	0	1	0	1	1
12	Compressor Lock	0	1	1	0	0
13	Compressor- Vospd exceeded	0	1	1	0	1
14	Compressor- Foldback		1	1	1	0
15	DC under voltage		1	1	1	1
16	DC over voltage	1	0	0	0	0
17	AC under voltage		0	0	0	1
18	No communication A		0	0	1	0
19	reserved		0	0	1	1
20	reserved	1	0	1	0	0
21	reserved	1	0	1	0	1
22	Compressor- Ilegal Speed	1	0	1	1	0
23	System Configuration Changed	1	0	1	1	1
24	System Configuration Problem	1	1	0	0	0
25	Heat sink Over Heating Fault/Protection		1	0	0	1
26	Deicing Protection		1	0	1	0
27	Compressor Over Heating Protection		1	0	1	1
28	System over power Protection	1	1	1	0	0
29	Bad EEPROM	1	1	1	0	1
30	Not Configured	1	1	1	1	0
31	Bad Communication	1	1	1	1	1

Notes:

1 - ON,0 - OFF

Whenever this table is updated, the installation test procedure, and the alarm output function should be updated.

Only one code is shown.

Order of priority is 1-32. Diagnostics is continuously ON as long as power is on.

Heat Sink Over Heating Protection, Compressor Over Heating Protection, and System Over Power Protection are declared only whenever in 'Stop-Compressor' status.

All faults, except the thermistor faults, will remain at least 10 seconds. This rule comes to serve the monitoring utilities, in a case the fault is released quickly it will be still shown under the monitoring utilities.

Thermistor faults are reported only when they are enabled.

When the outdoor unit is in fault (not protection), an in-fault signal is sent to the indoor. When all the outdoor unit faults are cleared, 'no-fault' signal is sent to the indoor.

11.2.3.2 Outdoor fault corrective actions

No	Fault Name	Probable Cause	Corrective Action
1	OCT bad		
2	CTT bad]	
3	HST bad	Thermistor not connected or	Check Thermistor
4	OAT bad	damaged	
5	TSUC bad		
6	RGT bad		
7	OFAN/Compressor Feedback Loss	OFAN halls or wires bad. Compressor wire cable bad or IPM bad or compressor bad	Check OFAN motor and compressor
8	OFAN - IPM fault	Over current / Over temperature of OFAN IPM	Check no obstruction to controller air opening Check OFAN motor Check motor type matches motor jumpers in controller
9	OFAN Lock	Fan does not rotate	Check OFAN motor
10	OFAN- Vospd exceeded	Exceeds speed high limit	Check motor type matches motor jumpers in controller Make necessary arrengments in unit installation location to avoid back wind Avoid EMC problems
11	Compressor- IPM Fault	Over current / Over temperature of compressor IPM	Check no obstruction to controller air opening Check Compressor
12	Compressor Lock	Compressor does not rotate	Check Compressor
13	Compressor- Vospd exceeded	Exceeds speed limit	Try again and replace controller if still have the problem
14	Compressor- Foldback	High pressure / Current reduces compressor speed	Check Compressor
15	DC under voltage	DC voltage is lower than limit	Replace controller
16	DC over voltage	DC voltage exceeds its high limit	Check if input voltage higher than limit (270VAC), if not and the problem presist, replace controller. If voltage is high, shut off the power and recommend the customer to fix the power supply
17	AC under voltage	AC input voltage is lower than limit	Check if input voltage lower than limit (170VAC), if not and the problem presist, replace controller. If voltage is low, recommend the customer to fix the power supply

No	Fault Name	Probable Cause	Corrective Action
18	No communication A	No signals in line A	Check communication
19	Compressor- llegal Speed	Exceeds speed low limit	See # 13
20	System Configuration Changed	Communication lines changed from last operation	No problem just an announcement
21	System Configuration Problem	Miss-match between the IDUs connected to port A,B,C or D, or the total capacity code of IDUs is higher than the ODU maximum capacity code	Change configuration if needed.
22	Heat sink Over Heating Fault/ Protection	Compressor stopped due to heatsink protection	Check that the airflow around the ODU is free and the fan is running free. Check fan motor (0)
23	Deicing Protection	During deicing procedure	No action required
24	Compressor Over Heating Protection	Compressor stopped due to over heat protection	Check if gas is missing in the system
25	System over power Protection	Compressor stopped due to over power protection	No action required
26	Bad EEPROM	EEPROM not operating	Power reset. (Replace Controller just in case you need EEPROM).
27	Not Configured	Cannot start the control	Power reset. Replace Controller if didn't help
28	Bad Communication	Bad communication lines	See # 18-21

Airwell

11.2.4 Fault Code for Indoor unit

Pressing Mode button for long will activate diagnostic mode by the acknowledgment of 3 short beeps and lighting of COOL and HEAT LED's.

Entering diagnostics in STBY mode allows only viewing of status (fault-display).

In diagnostic mode, system problems / information will be indicated by blinking of Heat & Cool LED's.

The coding method will be as follows:

Heat led will blink 5 times in 5 seconds, and then will be shut off for the next 5 seconds. Cool Led will blink during the same 5 seconds according to the following table:

No	Fault Name	5	4	3	2	1
1	RT-1 is disconnected	0	0	0	0	1
2	RT-1 is shorted	0	0	0	1	0
3	RT-2 is disconnected	0	0	0	1	1
4	RT-2 is shorted	0	0	1	0	0
	Reserved	0	0	1	0	1
7	Communication mismatch	0	0	1	1	1
8	No Communication	0	1	0	0	0
9	No Encoder	0	1	0	0	1
10	Reserved	0	1	0	1	0
11	Outdoor Unit Fault	0	1	0	1	1
	Reserved					
17	Defrost protection	1	0	0	0	1
18	Deicing Protection	1	0	0	1	0
19	Outdoor Unit Protection	1	0	0	1	1
20	Indoor Coil HP Protection	1	0	1	0	0
21	Overflow Protection	1	0	1	0	1
	Reserved					
24	EEPROM Not Updated	1	1	0	0	0
25	Bad EEPROM	1	1	0	0	1
26	Bad Communication	1	1	0	1	0
27	Using EEPROM data	1	1	0	1	1
28	Model A	1	1	1	0	0
29	Model B	1	1	1	0	1
30	Model C	1	1	1	1	0
31	Model D	1	1	1	1	1

1 - ON, 0 - OFF

Only one code is shown. Order of priority is lower to the higher number. Diagnostics is continuously ON as long power is on.

No.	Fault	Probable Cause	Corrective Action
1-4	Sensor failures	Sensors not connected or damaged	Check sensor connections or replace sensor
7	Communication mismatch	Indoor and Outdoor controllers are with different versions	Replace Indoor controller
8	No Communication	Communication or grounding wiring is not good	Check Indoor to Outdoor wiring and grounding
9	No Encoder	Indoor electronics or motor	Check motor wiring, if ok, replace motor, if still not ok, replace Indoor controller.
11	Outdoor Unit Fault	Outdoor controller problem	Switch to Outdoor diagnostics.
17-21	Protections	Indication	No action
24	EEPROM Not Updated	System is using ROM parameters and not EEPROM parameters	No action, unless special parameters are required for unit operation.
25	Bad EEPROM		No action, unless special parameters are required for unit operation.
26	Bad Communication	Communication quality is low reliability	Check Indoor to Outdoor wiring and grounding
27	Using EEPROM data	No problem	
28-31	IDU model		

11.2.4.1 Indoor unit diagnostics and corrective actions

11.2.5 **Procedures for checking Main Parts**

11.2.5.1 Checking Mains Voltage

Confirm that the Mains voltage is between 198 and 264 VAC. If Mains voltage is out of this range, abnormal operation of the system is expected. If in range check the Power (Circuit) Breaker and look for broken or loosed cable lugs or wiring mistake(s).

11.2.5.2 Checking Main fuse

Check 20A fuse on the Filter Board - If burnt – check the compressor, fan or any other peripheral that can cause a short. In case of a problematic peripheral - replace it.

In case no problematic peripheral, check the resistance on the DC bank (B+ & B- on the Power board), if it is less than 30Ω , replace the controller. Otherwise replace the burnt fuse. In case of frequent burning fuse, replace the controller.

11.2.5.3 Checking PFC Chock coil

Check PFC chock connection – repair if needed.

Dis-connect the chock from the controller wire extensions, check if the 2 wires of the chock are shorted. If shorted (OK) check between each wire and the metal box. If shorted replace chock, if not (OK), open the controller top cover and check if the wire extensions are connected well and if shorted. If not shorted, replace wires, if shorted (OK) than might be a controller problem – replace controller.

Airwell

11.2.5.4 Checking the Outdoor Fan Motor

Check FAN-Power and FAN-Halls connections - Repair if needed.

Rotate the fan slowly by hand. If the fan does not rotate easily, check whether something is obstructing the fan, or if the fan itself is coming into contact with the outer case, preventing it from rotating. Correct if necessary - otherwise, the fan motor bearings have seized. Replace the motor.

If the fan rotates easily, use a current probe ("Clamp") to assure AC current on each phase and it is less than 1A.

In case there is no current, check the resistance between the three poles. Assure the three coil resistances are almost the same.

The normal value should be between 10Ω to 20Ω .

Change to Stand-by or Power OFF and re-start - If the fault is still active - replace controller.

11.2.5.5 Checking the Compressor

Check Compressor connections - Repair if needed.

Use a current probe ("Clamp") to assure that there is an AC current on each phase – no more than 15A.

In case there is no current, check the resistance between the three poles. Assure the three coil resistances are almost the same (between 0.8Ω to 1.5Ω).

Change to Stand-by or Power OFF and re-start - If the fault is still "Active" - replace controller.

11.2.5.6 Checking the Reverse Valve (RV)

The RV has two parts, Solonoid and valve.

Solonoid - Running in heating mode, check the voltage between two pins of reverse valve connector, normal voltage is 230VAC. if no power supply to RV, Check RV operation with direct 230VAC power supply, if OK, replace outdoor controller.

Valve - if RV solonoid is OK (as above) but still no heating operation while compressor is On, replace the valve.

11.2.5.7 Checking the electrical expansion valve (EEV)

The EEV has two parts, drive and valve.

When Outdoor unit is powered on, EEV shall run and have click and vibration.

For assuring the problem is of the EEV parts, perform the installation test and if fails and no other indications in the diagnostics, than the problem is with the EEV (one or more).

Drive - a step motor; ringed on the valve. Check the drive voltage, should be12VDC.

Valve – if drive is OK (as above) but still the indoor unit perform no conditioning replace the valve (no need to take out the refrigerant, just pump down and shut off the main valves).

11.2.5.8 Checking the termistors

Check Thermistor connections and wiring - Repair if needed. Check Thermistor resistance – between 0°C and 40°C should be between $35K\Omega$ and $5K\Omega$.

11.2.5.9 Checking the communication

Change to Stand-by or Power OFF and re-start - If the fault is still "Active" check Indoor to Outdoor. Communication wiring and grounding connections (should be less than 2.0Ω) - Repair if needed. If IDU failure – replace IDU controller that does not respond. If ODU failure – replace ODU.

11.2.5.10 Checking for electromagnetic interferance (EMC problems)

EMC troubles to the A/C unit

Locations most susceptible to noise :

- 1. Locations near broadcast stations where there are strong electromagnetic waves.
- 2. Locations near amateur radio (short wave) stations.
- 3. Locations near electronic sewing machines and arc-welding machines.

Trouble :

Either of the following trouble may occur:

- 1. The unit may stop suddenly during operation.
- 2. Indicator lamps may flicker

Correction :

The fundamental concept is to make the system less susceptible to noise (insulate for noise or distance from the noise source):

- 1. Use shielded wires.
- 2. Move unit away from the noise source.

11.2.5.11 EMC troubles to near by home appliances

Locations most susceptible to noise :

- 1. A television or radio is located near the A/C and A/C wiring.
- 2. The antenna cable for a television or radio is located close to the A/C and A/C wiring.
- 3. Locations where television and radio signals are weak.

Trouble :

- 1. Noise appears in the television picture, or the picture is distorted.
- 2. Static occurs in the radio sound.

Correction

- 1. Select a separate power source.
- 2. Keep the A/C and A/C wiring at least 1 meter away from wireless devices and antenna cables.
- 3. Change the wireless device's antenna to a high sensitivity antenna.
- 4. Change the antenna cable to a BS coaxial cable.
- 5. Use a noise filter (for the wireless device).
- 6. Use a signal booster.

11.2.6 Precaution, Advise and Notice Items

11.2.6.1 High voltage in Outdoor unit controller

Whole controller, including the wires, connected to the Outdoor unit controller may have the potential hazard voltage when power is on. Touching the Outdoor unit controller may cause an electrical shock.

Advise: Don't touch the naked lead wire and don't insert finger, conductor or anything else into the controller when power is on.

11.2.6.2 Charged Capacitors

Three large-capacity electrolytic capacitors are used in the Outdoor unit controller. Therefore, charging voltage (380VDC) remains after power down. Discharging takes about one minute after turned off. Touching the Outdoor unit controller before discharging may cause an electrical shock. When open the Outdoor unit controller cover, don't touch the soldering pin by hand or by any conductive material.

Airwell

11.2.6.3 Advise:

Open the Outdoor unit controller cover only after one minute from power off. Measure the electrolytic capacitors voltage before farther checking controller. Additional advises

When disassemble the controller or the front panel, turn off the power supply.

When connecting or disconnecting the connectors on the PCB, hold the whole housing, don't pull the wire, there are sharp fringes and sting on shell. Use gloves when disassemble the A/C units.

12. CONTROL SYSTEM

12.1 General Functions and Operating Rules

The DCI software is fully parametric.

All the model dependent parameters are shown in Blue color and with Italic style [*parameter*]. The parameters values are given in the last section of this control logic chapter of the service manual.

12.1.1 System Operation Concept

The control function is divided between indoor and outdoor unit controllers. Indoor unit is the system 'Master', requesting the outdoor unit for cooling/heating capacity supply. The outdoor unit is the system 'Slave' and it must supply the required capacity unless it enters into a protection mode avoiding it from supplying the requested capacity.

The capacity request is transferred via indoor to outdoor communication, and is represented by aparameter called 'NLOAD'. NLOAD is an integer number with values between 0 and 127, and it represents the heat or cool load felt by the indoor unit.

12.1.2 Compressor Frequency Control

12.1.2.1 NLOAD setting

The NLOAD setting is done by the indoor unit controller, based on a PI control scheme. The actual NLOAD to be sent to the outdoor unit controller is based on the preliminary LOAD calculation, the indoor fan speed, and the power shedding function.

NLOAD limits as a function of indoor fan speed:

Indoor Fan Speed	Maxium NLOAD Cooling	Maxium NLOAD Heating		
Low	MaxNLOADIF1C	MaxNLOADIF1H		
Medium	MaxNLOADIF2C	MaxNLOADIF2H		
High	MaxNLOADIF3C	MaxNLOADIF3H		
Turbo	MaxNLOADIF4C	MaxNLOADIF4H		
Auto	MaxNLOADIF5C	MaxNLOADIF5H		

Indoor Fan Speed Maximum NLOAD Cooling Maximum NLOAD Heating

NLOAD limits as a function of power shedding:

Mode	Power Shedding OFF	Power Shedding ON
Cooling	No limit	Nominal Cooling
Heating	No limit	Nominal heating

12.1.3 Target Frequency Setting

12.1.3.1 Target Frequency Setting for GC 24 Z

The compressor target frequency is a function of the NLOAD number sent from the indoor controller and the outdoor air temperature.

Basic Target Frequency Setting:

NLOAD	Target Frequency
127	Maximum Frequency
10 <nload<127< td=""><td>Interpolated value between minimum and maximum frequency</td></nload<127<>	Interpolated value between minimum and maximum frequency
10	Minimum frequency
0	Compressor is stopped

Target frequency limits as a function of outdoor air temperature (OAT):

OAT Range	Cooling Mode limits	Heating Mode limits
OAT < 6		No limit
6 ≤ OAT < 15	MaxFreqAsOATC	MaxFreqAsOAT1H
15 ≤ OAT < 28		
28≤ OAT	No limit	MaxFreqAsOAT2H

12.1.3.2 Target Frequency Setting for GC 30

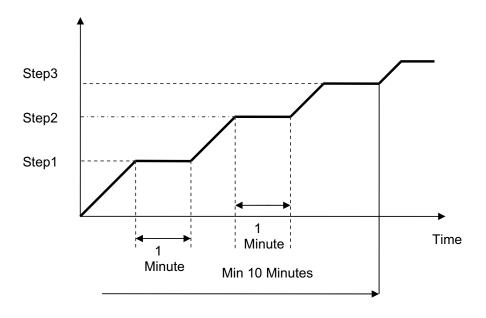
The compressor Target Speed is calculated according to the following formula:

$$T \operatorname{arg} et Speed_{load} = \max\left[\operatorname{MinSpeed}, \operatorname{MaxSpeed} \cdot \frac{ODUNload}{127}\right]$$

MiniSpeed, MaxSpeed are defined as following:

When the unit is in the cool mode, MiniSpeedC = 15Hz, MaxSpeed = 75HzWhen the unit is in the heat mode, MiniSpeedH = 20Hz, MaxSpeed = 95HzODU NLOAD is caculated according to the IDU NLoad:

$$ODU \ NLOAD = \min\left\{\frac{3*IDUNLOAD}{ODUCode}, 127\right\}$$


OAT	ODUCodeC	ODUCodeC	IDUNLOAD
≤-5	3	3	Defer to east 112 1 2 1
≤-5	3.8	3	Refer to sect. <u>112.1.2.1</u>

12.1.4 Frequency Changes Control

When the unit is running normally, the compressor frequency change rate is 1 Hz/sec.

12.1.5 Compressor Starting Control

12.1.5.1 Compressor starting control for GC 24 Z

12.1.5.2 Compressor starting control for DCI72/80

Step 1

Whenever the compressor starts up, after it has been off for more than 45 minutes, the compressor frequency cannot go below *Step1RPS* for 3 continuous minutes (*this rule comes to ensure oil return to the compressor*).

Step 2

The compressor speed cannot go above *Step2RPS* once after each compressor start up for 3 continuous minutes (*this rule comes to prevent oil exit from the compressor after its start up*).

Step 3

The speed cannot go higher than *Step3RPS* unless it was operating for more than 1 continuous minutes between Step3RPS - 5 and Step3RPS.

After passing above *Step3RPS*, this rule is re-applied when passing below *Step3RPS*-5.

12.1.6 Minimum On and Off Time

3 minutes

12.1.7 Indoor Fan Control

8 Indoor fan speeds are determined for each model. 4 speeds for cool/dry/fan modes and 4 speeds for heat mode.

When user sets the indoor fan speed to a fixed speed (Low/ Medium/ High), unit will operate constantly at set speed.

When Auto Fan is selected, indoor unit controller can operate in all speeds. The actual speed is set according to the cool/heat load.

12.1.7.1 Turbo Speed

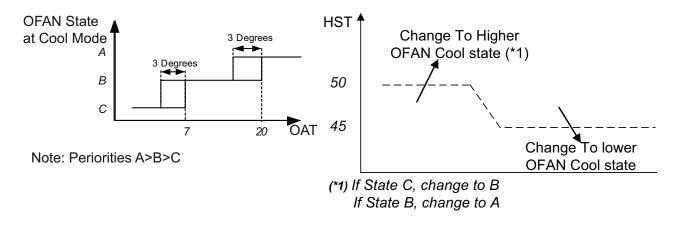
The Turbo speed is activated during the first 30 minutes of unit operation when auto fan speed is selected and under the following conditions:

Difference between set point and actual room temperature is bigger then 3 degrees. Room temperature > 22 for cooling, or < 25 for heating.

12.1.8 Outdoor Fan Control

12.1.8.1 Outdoor Fan Control for DCI50/60

7 outdoor fan speeds are determined for each model. 3 speeds for cool and dry modes, and 3 speeds for heat mode, and a very low speed.


Outdoor fan speed is a function of compressor frequency and outdoor air temperature (OAT).

4 routines for fan control are determined. The control routine selection depends on operation mode, compressor speed, outdoor air temperature (OAT) and heat sink temperature (HST).

Routine	Conditions	
A	Heating with OAT < 15°C or Cooling with OAT > 20°C, or Faulty OAT	
В	Cooling with 20°C > OAT > 7°C	
С	Cooling with 7°C > OAT	
D	Heating with OAT > 15°C	

Compressor	OFAN Speed					
Target Frequency	Routin	Routin	Routin	Routin		
larger requency	А	В	С	D		
Freq=0	OFF	OFF	OFF	OFF		
10 ≤ Freq < <i>OFLowFreq</i>	Low	Low	VL	Low		
OFLowFreq ≤ Freq< OFMedFreq	Medium	Low	VL	Low		
OFMedFreq≤ Freq	High	Low	Low	Medium		

When compressor is switched to OFF and the heat sink temperature is above 55 degrees, the outdoor fan will remain ON in low speed for up to 3 minutes.

12.1.8.2 Outdoor Fan Control for GC 24 Z, GC 30

OFAN operates between any speed OFMinRPM to OFMaxRPM.

The fan speed is also related to protections and OMT value.

* For DCI 72Z, in heating mode the OFAN speed is related to OCT.

12.1.9 EEV (Electronic Expansion Vavle) Control

12.1.9.1 EEV Control for DCI50/60

EEV opening is defined as EEV = EEVOL + EEVCV

EEVOL is the initial EEV opening as a function of the compressor frequency, operation mode, unit model and capacity.

EEVCV is a correction value for the EEV opening that is based on the compressor temperature.

During the first 5 minutes of compressor operation EEVCV = 0.

Once the first 5 minutes are over, the correction value is calculated as follow: EEVCV(n) = EEVCV(n-1) + EEVCTT

EEVCTT is the correction based on the compressor temperature. A target compressor temperature is set depending on frequency and outdoor air temperature, and the actual compressor temperature is compared to the target temperature to set the required correction to the EEV opening.

12.1.9.2 EEV Control for DCI72/72Z/80

The target EEV value is the sum of open loop value (OL) and a result of the accumulative correction values (CV).

 $EEV = EEV_{OL} + \sum EEV_{CV}$

The EEV intial value(OL) is defined as follow:

EEV_{ol} = EEVBaseOpenLoop + EEVOpenLoopCpctyCrct + EEVTubeCompnst

Basic EEV open loop		Open Loop correction	EEV tube Length compensation	
Mode	GC30	GC 30	GC 30	
COOL	220	25	0	
HEAT	170	30	0	

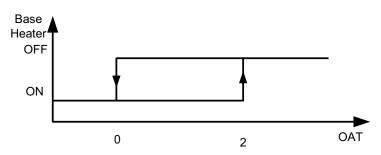
*For DCI72Z

The initial EEV_{OL} is defined in accordance to the compressor frequency

EEV_{CV} is a correction value for the EEV opening that is based on the compressor temperature, During the first 6 minutes after SB the correction is not calculated. After that the correction value is updated every *30* seconds.

12.1.10 RV(Reversing Valve) Control

Reversing valve is on in heat mode.


Switching of RV state is done only after compressor is off for over 3 minutes.

12.1.11 Ioniser Control

Ioniser is on when unit is on ,AND indoor fan is on ,AND Ioniser power switch (on Ioniser) is on.

12.1.12 Base Heater Control

The base heater will be working only when RV is "ON" according to the following graph:

When OAT is faulty the base heater will be "ON" continuously in HEAT mode.

12.2 Fan Mode

In high/ medium/ low indoor fan user setting, unit will operate fan in selected speed.

In AutoFan user setting, fan speed will be adjusted automatically according to the differencebetween actual room temperature and user set point temperature.

Airwell

12.3 Cool Mode

NLOAD is calculated according to the difference between actual room temperature and user set point temperature by PI control.

In high/ medium/ low indoor fan user setting, unit will operate fan in selected speed.

In AutoFan user setting, fan speed will be adjusted automatically according to the calculated NLOAD.

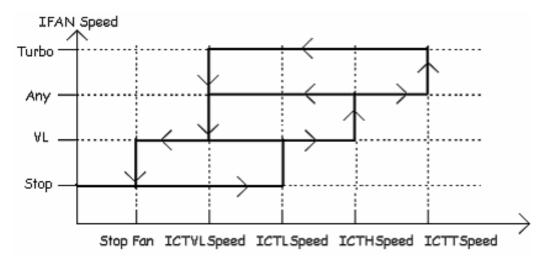
12.4 Heat Mode

NLOAD is calculated according to the difference between actual room temperature and user set point temperature by PI control.

In high/ medium/ low indoor fan user setting, unit will operate fan in selected speed.

In AutoFan user setting, fan speed will be adjusted automatically according to the calculated NLOAD.

12.4.1 Temperature Compensation


In wall mounted, ducted, and cassette models, 3 degrees are reduced from room temperature reading (except when in I-Feel mode), to compensate for temperature difference between high and low areas in the heated room, and for coil heat radiation on room thermistor.

The temperature compensation can be enabled/disabled by shortening of J2 on the indoor unit Controller

Model	J2 Shorted	J2 Opened		
Wall mounted	Compensation Disabled	Compensation Enabled		
Cassette	Compensation Enabled	Compensation Disabled		
Ducted	Compensation Enabled	Compensation Disabled		
Floor/Ceiling	Compensation Disabled	Compensation Enabled		

12.4.2 Indoor Fan Control in Heating Mode

Indoor fan speed depends on the indoor coil temperature:

12.5 Auto Cool/Heat Mode

When in auto cool heat mode unit will automatically select between cool and heat mode according to the difference between actual room temperature and user set point temperature (.T). Unit will switch from cool to heat when compressor is off for 3 minutes, and .T < -3. Unit will switch from heat to cool when compressor is off for 5 minutes, and .T < -3.

SM KXLDCI 2-A.2 GB

Airwell

12.6 Dry Mode

As long as room temperature is higher then the set point, indoor fan will work in low speed and compressor will work between 0 and *MaxNLOADIF1C* Hz.

When the room temperature is lower than the set point, compressor will be switched OFF and indoor fan will cycle 3 minutes OFF, 1 minute ON.

12.7 **Protections**

There are 5 protection codes.

Normal (Norm) – unit operate normally.

Stop Rise (SR) – compressor frequency can not be raised but does not have to be decreased.

HzDown1 (D1) – Compressor frequency is reduced by 2 to 5 Hz per minute.

HzDown2 (D2) – Compressor frequency is reduced by 5 to 10 Hz per minute.

Stop Compressor (SC) – Compressor is stopped.

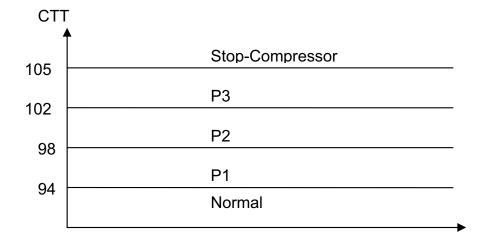
12.7.1 Indoor Coil Defrost Protection

	ICT Trend						
ІСТ	Fast Increasing	Increasing	No Change	Decreasing	Fast		
ICT< -2	SC	SC	SC	SC	SC		
-2 ≤ ICT<0	D1	D1	D2	D2	D2		
0 ≤ ICT < 2	SR	SR	D1	D2	D2		
2 ≤ ICT< 4	SR	SR	SR	D1	D2		
4 ≤ ICT < 6	Norm	Norm	SR	SR	D1		
6 ≤ ICT ≤ 8	Norm	Norm	Norm	SR	SR		
ICT> 8			Norm				

12.7.2 Indoor Coil Overheating Protection

12.7.2.1 Indoor Coil Overheating Protection For GC 24 Z

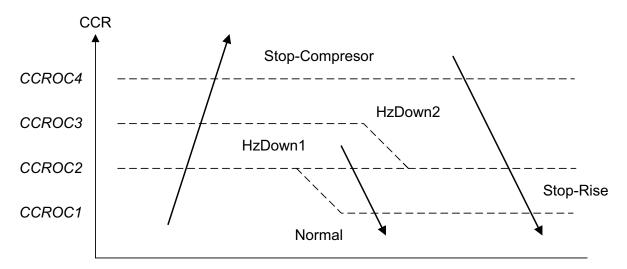
	ICT Trend						
ІСТ	Fast	Decreasing	No Oberes	la constanta	Fast		
	Decreasing	No Change	Increasing	Increasing			
ICT >62	SC	SC	SC	SC	SC		
60 ≤ ICT < 62	D1	D1	D2	D2	D2		
55≤ ICT <60	SR	SR	D1	D2	D2		
52≤ ICT < 55	SR	SR	SR	D1	D2		
48≤ ICT < 52	Norm	Norm	SR	SR	D1		
45≤ ICT ≤ 48	Norm	Norm	Norm	SR	SR		
ICT <45			Norm				


12.7.2.2 Indoor Coil Overheating Protection For 72/80

іст	ICT Trend						
	<-2	-2	-1,0,1	2	>2		
ICT >62	SC	SC	SC	SC	SC		
60 ≤ ICT < 62	D1	D1	D2	D2	D2		
58≤ ICT <60	SR	SR	D1	D2	D2		
56≤ ICT < 58	SR	SR	SR	D1	D2		
54≤ ICT < 56	Norm	Norm	SR	SR	D1		
52≤ ICT ≤ 54	Norm	Norm	Norm	SR	SR		
ICT <52	Norm						

12.7.3 Compressor Overheating Protection

12.7.3.1 Compressor Overheating Protection for GC 24 Z DCI


Compressor temperature can be in one of 5 control zones (4 in protection, and 1 normal), according to the following chart.

Control Status	Compressor Temperature Increases	Else
P1	Normal	Stop Rise
P2	HzDown 1	Stop Rise
P3	HzDown 2	HzDown 1
Stop Compressor	Stop Compressor	

СТТ		CTT Trend					
Cool	Heat	Fast Decreasing	Decreasing	No Change	Increasing	Fast Increasing	
CTT >105	CTT >105	SC	SC	SC	SC	SC	
100≤ CTT < 105	100≤ CTT < 105	D1	D1	D2	D2	D2	
98≤CTT <100	95≤CTT <100	SR	SR	D1	D2	D2	
93≤CTT < 100	85≤CTT < 95	SR	SR	SR	D1	D1	
90≤CTT ≤ 93	<i>80</i> ≤CTT ≤ 85	Norm	Norm	Norm	SR	SR	
CTT <90	CTT <80	Norm					

12.7.4 Compressor Over Current Protection Only For GC 24 Z DCI

12.7.5 Heat Sink Overheating Protection

12.7.5.1 Heat Sink Overheating Protection For GC 24 Z DCI

	HST Trend						
HST	Fast Decreasing	Decreasing	No Change	Increasing	Fast Increasing		
HST ≥ 90	SC	SC	SC	SC	SC		
85 ≤ HST < 90	D1	D1	D2	D2	D2		
82 ≤ HST < 85	SR	SR	D1	D2	D2		
80≤ HST< 82	SR	SR	SR	D1	D1		
78 ≤ HST ≤ 80	Norm	Norm	Norm	SR	SR		
HST < 78	Norm						

12.7.5.2 Heat Sink Overheating Protection For GC 30 DCI

HST	Delta HST					
	<-2	-2	-1,0,1	2	>2	
HST≥ <i>81</i>	SC	SC	SC	SC	SC	
79 ≤ HST < 81	D1	D1	D2	D2	D2	
75 ≤ HST < 79	SR	SR	D1	D2	D2	
73≤ HST< 75	SR	SR	SR	D1	D1	
71 ≤ HST ≤ 73	Norm	Norm	Norm	SR	SR	
HST < 71	Norm					

12.7.6 System Over Power Protection Only For GC 30 DCI

Power		Delta PWR				
Fower		< -2000	[-2000,0)	0	(0,2000]	> 2000
PWR1	PWR2					
PWR ≥ 3500	PWR ≥ 2900	SC	SC	SC	SC	SC
3300≤PWR < 3500	2750≤PWR < 2900	D1	D1	D2	D2	D2
3100 ≤PWR < 3300	2600≤PWR < 2750	SR	SR	D1	D2	D2
3000≤PWR < 3100	2450≤PWR < 2600	SR	SR	SR	D1	D1
2950 ≤PWR ≤ 3000	2300 ≤PWR ≤ 2450	Norm	Norm	Norm	SR	SR
PWR < 2950	PWR < 2300			Norm		

There are two sets of OVRPWR values, the selection of the values are set according to the state of the Power-Shed input.

Power-Shed input open Set values 1

Power-Shed input sort Set values 2

12.7.7 Outdoor Coil Deicing Protection

12.7.7.1 Outdoor coil Deicing Protection For GC 24 Z DCI

Entering Deicing Conditions

Deicing operation will start when either one of the following conditions exist:

Case 1: OCT < OAT – 8 AND TLD > DI

Case 2: OCT < OAT – 12 AND TLD > 30 minutes.

Case 3: OCT is Invalid AND TLD > DI

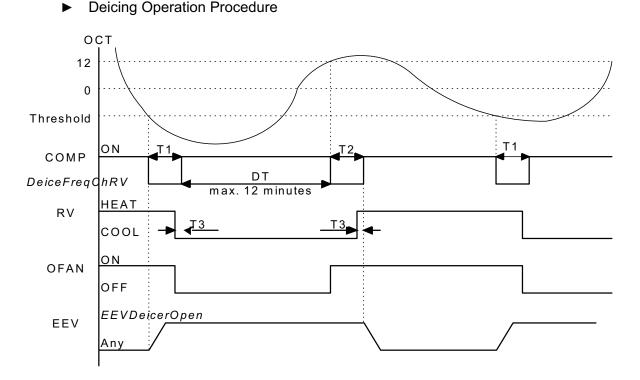
Case 4: Unit is just switched to STBY AND OCT < OAT – 8

Case 5: NLOAD = 0 AND OCT < OAT -8

Case 6: OCT<-19 AND TLD>60 minutes

All this condition will exist during 10 seconds

OCT – Outdoor Coil Temperature


OAT – Outdoor Air Temperature

TLD – Time from Last Deicing

DI – Deicing Interval (Time Interval Between Two Deicing)

Deicing interval time when compressor is first started in heat mode, is 10 minutes if OCT < -2, and is 40 minutes in other cases.

Deicing interval time is changed (increased/ decreased in 10 minutes steps) as a function of deicing time. If deicing time is shorter then former deicing time, the deicing interval time will be increased. If deicing time is longer then former deicing time, the deicing interval time will be decreased.

T1=60 secondes;T2=36 secondes;T3=6 secondes

12.7.7.2 Outdoor coil Deicing Protection For GC 30 DCI

► Entering Deicing Conditions

Deicing operation will start when either one of the following conditions exist:

Case 1: OCT < OAT – 8 AND TLD > DI

Case 2: OCT < OAT – 12 AND TLD > 30 minutes.

Case 3: OCT is Invalid AND TLD > DI

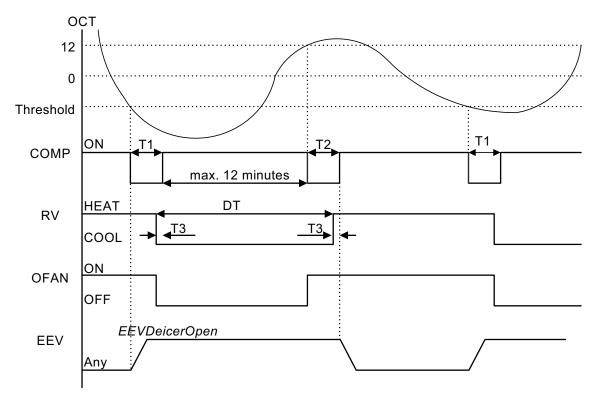
Case 4: Unit is just switched to STBY AND OCT < OAT - 8

Case 5: NLOAD = 0 AND OCT < OAT - 8

Case 6: OAT is invalid AND OCT< 8 AND TLD > *DI* AND Compressor ON Time > 15 minutes All this condition will exist during 400 seconds

OCT – Outdoor Coil Temperature

OAT – Outdoor Air Temperature


TLD – Time from Last Deicing

DI – Deicing Interval (Time Interval between Two Deicing)

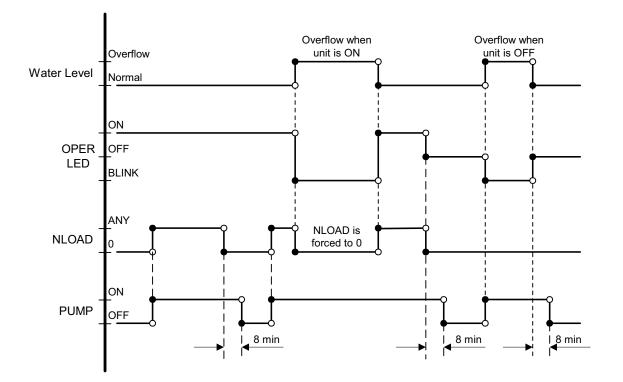
Deicing interval time when compressor is first started in heat mode, is 10 minutes if OCT < -2, and is 40 minutes in other cases.

Deicing interval time is changed (increased/ decreased in 10 minutes steps) as a function of deicing time. If deicing time is shorter then former deicing time, the deicing interval time will be increased. If deicing time is longer then former deicing time, the deicing interval time will be decreased.

► Deicing Operation Procedure

T1=50 secondes;T2=36 secondes;T3=6 secondes

12.7.8 Condensate Water Over Flow Protection


Each of the pins P1, P2, P3 can have two options:

- 1 When it is shorted with P4
- 0 When it is not shorted to P4
- ► Water Level Protection-1 level

P1	P2	P3	Level
Don't care	Don't care	1	Normal
Don't care	Don't care	0	Overflow

(*) 1- Pin P1, P2, or P3 is connected to P4.

0- Pin P1, P2 or P3 is not connected to P4.

12.8 Indoor Unit Dry Contact

Indoor unit Dry contact has two alternative functions that are selected by J9.

	Function	Contact=open	Contact=short	
J9=open	Presence Detector Connection	No limit	Force to STBY	
J9=short	Power Shedding Function	No limit	Limit NLOAD	

12.9 Operating the Unit from Mode Button

Forced operation allows to start, stop and operate in Cooling or Heating, in pre-set temperature according to the following table:

Forced operation Mode	Pre-set Temperature
Cooling	20°C
Heating	28°C

12.10 On Unit Controls and Indicators

12.10.1 Indoor Unit controller Controls and Indicatiors for All Models Except for Floor/Ceiling model

During OFF, Fan, Cool, Heat, Dry, and Auto modes (for operation in other modes, see at the relevant spec paragraph):

STAND BY INDICATOR	 Lights up when the Air Conditioner is connected to power and ready to receive the R/C commands 		
OPERATION INDICATOR	 Lights up during operation. Blinks for 300 msec., to announce that a R/C infrared signal has been received and stored. Blinks continuously during protections (according to the relevant spec section). 		
TIMER INDICATOR	Lights up during Timer and Sleep operation.		
FILTER INDICATOR	Lights up when Air Filter needs to be cleaned.		
COOLING INDICATOR	Lights up when system is switched to Cool Mode by using the Mode Switch on the unit.		
HEATING INDICATOR	Lights up when system is switched Heat Mode by using the Mode Switch on the unit.		
Mode SWITCH (COOL/HEAT/OFF)	Every short pressing , the next operation mode is selected, in this order : $SB \rightarrow Cool Mode \rightarrow Heat Mode \rightarrow SB \rightarrow$ In long pressing system enters diagnostic mode.		
RESET / FILTER SWITCH	For short pressing: When Filter LED is on - turn off the FILTER INDICATOR after a clean filter has been reinstalled. When Filter LED is off – enable/disable the buzzer announcer, if selected. In long pressing system enters set up mode (if in SB).		

12.10.2 Outdoor Unit controller Indicatiors

Unit has three LED's.

SB LED is ON when power is ON (230 VAC, even when no communication).

STATUS LED is ON when COMP is ON, and Blinks according to diagnostics mode definitions when either fault or protection occurs.

FAULT LED Blinks according to diagnostics mode definitions when either fault or protection occurs.

12.11 Test Mode

12.11.1 Entering Test Mode

System can enter Test mode in two ways:

Automatically when the following conditions exists for 30 minutes continuously:

Mode = Cool, Set point = 16, Room temperature = 27(+1/-2), Outdoor temperature = 35(+2/-1) Or

Mode = Heat, Set point = 30, Room temperature = 20 ± 1 , Outdoor temperature = $7\pm(+1/-2)$ Manually when entering diagnostics with the following settings:

Mode = Cool, Set point = 16

Mode = Heat, Set point = 30

12.11.2 Unit Operation in Test Mode

In test mode, the unit will operate in fixed settings according to the indoor fan speed setting:

Indoor FAN Speed Setting	Unit Setting	
Low	Minimum Capacity Setting	
Turbo	Nominal Capacity Setting	
Auto	Maximum Capacity Setting	

During test mode, protections are disabled, except for stop compressor status.

12.12 SW Parameters

12.12.1 Indoor Units SW Parameters

Model dependent parametes - KLX

	A	В
	(KLX 24)	(KLX 30)
Cap .Group	4	4
NomLoadC	61	67
NomLoadH	59	67
MaxNLOADIF1C	44	85
MaxNLOADIF2C	50	102
MaxNLOADIF3C	120	120
MaxNLOADIF4C	127	127
MaxNLOADIF5C	127	127
MinRTC	20	20
MaxNLOADRTC	127	127
MaxNLOADIF1H	127	127
MaxNLOADIF2H	127	127
MaxNLOADIF3H	127	127
MaxNLOADIF4H	127	127
MaxNLOADIF5H	127	127
MaxNLOADRTH	127	127
MaxRTH	27	27
MaxNLOADPSC	61	67
MaxNLOADPSH	59	67

Model dependent parameters - DNG

	Α	В	С	D
Unit	(DNG50)	(DNG60)	(DNG72)	(DNG80)
Cap .Group	3	3	4	4
NomLoadC	62	77	57	60
NomLoadH	74	80	55	63
ICTSTSpeed	22	22	22	22
ICTVLSpeed	28	28	28	28
ICTLSpeed	30	30	30	30
ICTHSpeed	32	32	32	32
ICTTSpeed	40	40	40	40
MaxNLOADIF1C	50	50	63	78
MaxNLOADIF2C	63	63	85	100
MaxNLOADIF3C	120	120	115	127
MaxNLOADIF4C	127	127	127	127
MaxNLOADIF5C	127	127	127	127
MinRTC	20	20	20	20
MaxNLOADRTC	127	127	127	127
MaxNLOADIF1H	127	127	127	127
MaxNLOADIF2H	127	127	127	127
MaxNLOADIF3H	127	127	127	127
MaxNLOADIF4H	127	127	127	127
MaxNLOADIF5H	127	127	127	127
MaxNLOADRTH	127	127	127	127
MaxRTH	27	27	27	27
MaxNLOADPSC	62	77	57	60
MaxNLOADPSH	74	80	55	63

Model dependent parameters - WNG

Parameter name	(WNG) Wall Mounted Models						
Farameter hame	25	35	50	60	72	80	
NLOAD limits as a function of selected indoor fan speed							
MaxNLOADIF1C	40	40	45	50	53	68	
MaxNLOADIF2C	53	53	62	85	75	90	
MaxNLOADIF3C	120	120	120	120	105	120	
MaxNLOADIF4C	127	127	127	127	127	127	
MaxNLOADIF5C	127	127	127	127	127	127	
Indoor Fan speeds							
IFVLOWC	700	700	700	800	850	850	
IFLOWC	800	800	900	1000	1000	1000	
IFMEDC	900	950	1050	1100	1150	1150	
IFHIGHC	1050	1100	1200	1250	1350	1300	
IFTURBOC	1150	1200	1250	1300	1400	1350	
IFVLOWH	700	700	700	800	900	900	
IFLOWH	800	850	900	950	1050	1050	
IFMEDH	950	1000	1100	1150	1200	1200	
IFHIGHH	1100	1150	1250	1250	1350	1300	
IFTURBOH	1200	1250	1300	1300	1400	1350	

Airwell

Model dependent parameters - PXD

Unit	A (PXD50)	B (PXD60)	C (PXD72)	D (PXD80)
Cap .Group	3	3	4	4
NomLoadC	68	80	60	63
NomLoadH	77	82	60	67
MaxNLOADIF1C	40	50	127	127
MaxNLOADIF2C	60	85	127	127
MaxNLOADIF3C	90	127	127	127
MaxNLOADIF4C	90	127	127	127
MaxNLOADIF5C	90	127	127	127
MinRTC	20	20	20	20
MaxNLOADRTC	127	127	127	127
MaxNLOADIF1H	127	127	127	127
MaxNLOADIF2H	127	127	127	127
MaxNLOADIF3H	127	127	127	127
MaxNLOADIF4H	127	127	127	127
MaxNLOADIF5H	127	127	127	127
MaxNLOADRTH	127	127	127	127
MaxRTH	27	27	27	27
MaxNLOADPSC	68	80	60	63
MaxNLOADPSH	77	82	60	67

12.12.2 Outdoor Units SW Parameters: Model dependent parameters for DCI50/60

#	Name	Single DCI-50	Single DCI 60
1	MinFregC	20	20
2	MaxFreqC	85	95
3	MinFregH	20	26
4	MaxFreqH	95	94
5	NormAccel	1	1
6	NormDecel	1	1
7	Step1Freq	60	60
8	Step2Freq	70	70
9	Step3Freq	90	90
10	OFVL	20	20
11	OFLOWC	60	55
12	OFMEDC	76	70
13		92	79
14 15	OFLOWH OFMEDH	60 83	<u>55</u> 70
16	OFMAXH	100	70
17	OFANTESTMODEC	92	83
18	OFANTESTMODEH	100	83
19	OFDelTestMode	28	28
20	CTTOH1	94	94
21	CTTOH2	98	98
22	СТТОНЗ	102	102
23	CTTOH4	105	105
24	CCROC1	10	11.4
25	CCROC2	10.5	11.8
26	CCROC3	10.8	12.2
27	CCROC4	11.2	12.6
28	DEICT1	60	60
29	DEICT2	36	36
<u>30</u> 31	DEICT3	<u>6</u> 60	6 60
32	ProtFreqLimit EEVDecierOpen	100	180
33	OptimDeicFreq	90	90
34	EEVMinOperOpenC	50	80
35	EEVMaxOperOpenC	380	380
36	EEVMinOperOpenH	50	60
37	EEVMaxOperOpenH	380	300
38	EEVNormRate	33	33
39	EEVHighRate	12	12
40	EEVMaxOpen	500	500
41	OFLowFreqC	40	35
42		70	55
43 44		<u>40</u> 86	<u>40</u> 60
44	OFMedFreqH HeaterDisableFlag	0	0
45	DeiceFregChRV	0	0
47	OATRefC	35	35
48	SUCT Enable	0	0
49	HST Enable	1	1
50	OAT Enable	1	1
51	OATRefH	7	7
52	MinTargCTTC	30	30
53	MaxTargCTTC	95	90
54	MinTargCTTH	40	45
55	MaxTargCTTH	95	90
56	DST	8	8
57	DSTF	12	12
58	OATLimitC	28	28
59	OATLimit1H	6	6
60	OATLimit2H	15	15
61	MaxFreqAsOATC	64	85
62		85	80
63	MaxFreqAsOAT2H	60	60

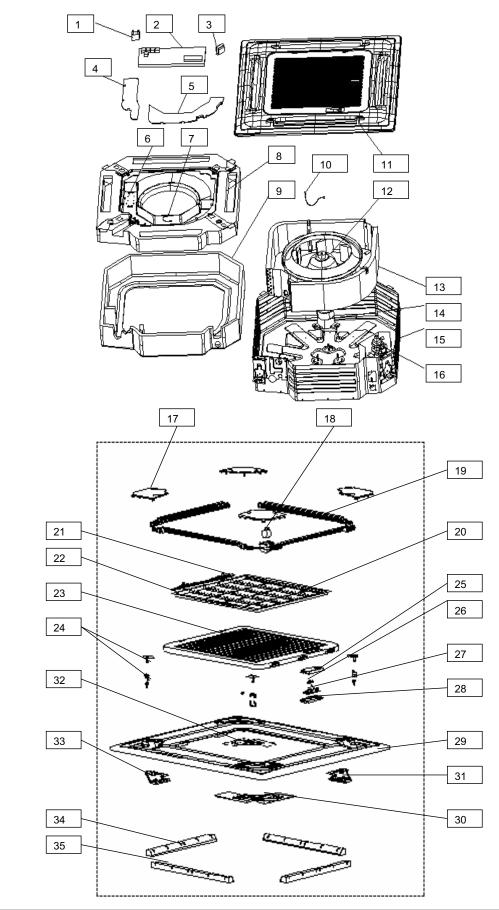
Airwell

Airwell

Model dependent parameters for GC 24 Z DCI

No.	Name	Single GC 24 Z	
1	MinFreqC 15		
2	MaxFreqC	70	
3	MinFreqH 15		
4	MaxFreqH 90		
7	Step1Freq	35	
8	Step2Freq 55		
9	Step3Freq	90	
10	OFMinRPM	8	
11	OFMaxRPM	90	
12	NightRPM	65	
13	OFNNoiseMaxRPM	78	
14	CTTOH1	90	
15	CTTOH2	95	
16	СТТОНЗ	100	
17	СТТОН4	105	
18	CCROC1	12.5	
19	CCROC2	13.3	
20	CCROC3	14.1	
21			
22	ProtFreqLimit	60	
23	EEVMinOperOpenC	50	
24	EEVMaxOperOpenC	480	
25	EEVMinOperOpenH	50	
26	EEVMaxOperOpenH	480	
27	HeaterDisableFlag	0	
28	HST Enable	1	
29	OATLimitC	24	
30	OATLimit1H	6	
31	OATLimit2H	15	
32	MaxFreqAsOATC	60	
33	MaxFreqAsOAT1H	85	
34	MaxFreqAsOAT2H	75	
35	NormAccel	1	
36	NormDecel	1	

Airwell

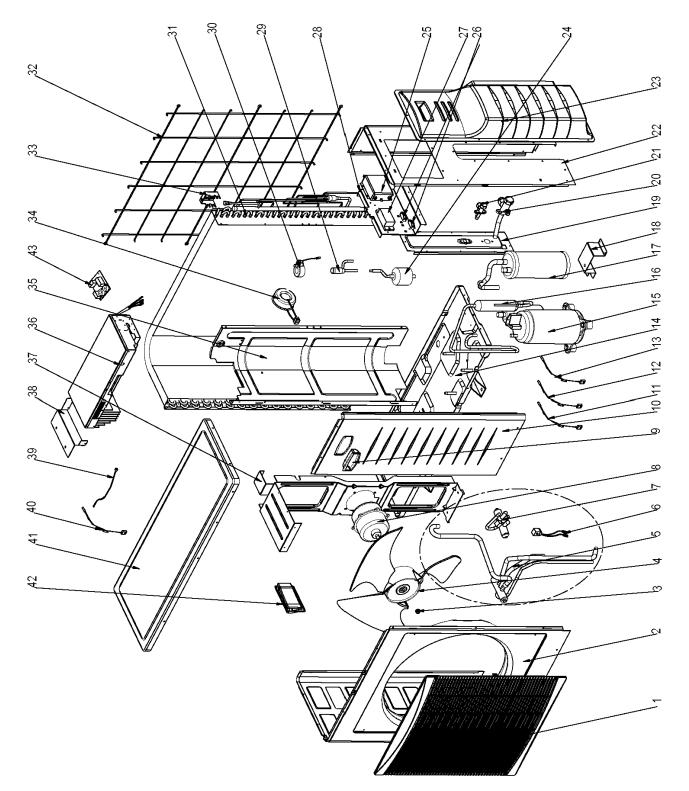

Model dependent parameters for GC 30 DCI

Compressor Parameters	Value
MinOFFTime	3
MinOnTime	3
MaxCTT1	90
MaxCTT2	90
MinSpeedAsCTT1	26
MinSpeedAsCTT2	26
MaxSpeedC	75
MaxSpeedH	95
Step1RPS	40
Step2RPS	60
Step3RPS	75
NormAcc (sec/RPS)	1
NormDec (sec/RPS)	1
Down1(Sec/RPS)	12
Down2 (Sec/RPS)	7
DeiceAcc (Sec/RPS)	0.2
DeiceDec (Sec/RPS)	0.5

EEV Parameters	Value
NormEEVRate	30
EEVCompOFFOpen	200
EEVCompOFFTime	60
EEVMaxOpen	500
EEVMinOperOpenC	60
EEVMaxOperOpenC	500
EEVMinOperOpenH	70
EEVMaxOperOpenH	500
EEVMinOperOpenHInIDU	60
EEVMaxOperOpenHInIDU	140
EEVIDUOFFOpen	130
EEVMoveSteps	20
EEVTConstC	30
EEVTConstH	30
BIncTimTrnsStC	1
BIncTimStdyStC	1
BIncTimTrnsStH	1
BIncTimStdyStH	1
CompOffTimToTrnsSt	20

13. EXPLODED VIEWS AND SPARE PARTS LISTS

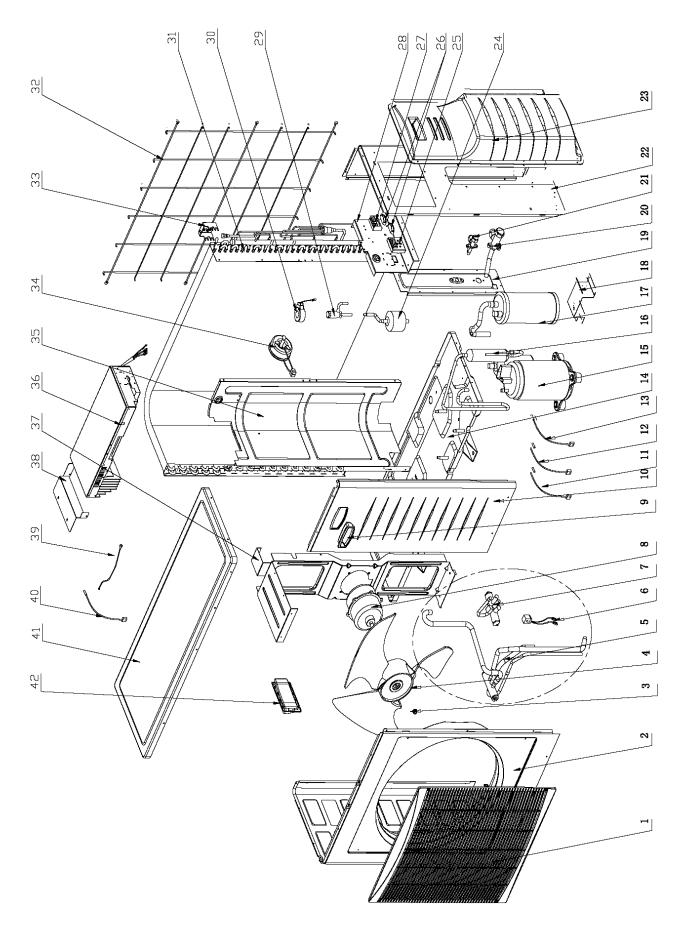
13.1 Indoor Unit: KXL 24, KXL 30 DCI


13.2 Indoor Unit: KXL 24 DCI

No.	Part No.	Item Description	Qty
1	455000103	Double patch Capacitor for fan motor 3.5uF (CBB61S)	1
2	467300035R	DCI KN) Controller/Indoor Units EHK911A522-00	1
3	4523162	TRANSFORMER ASSY.	1
4	2114200004	1 E-Parts Box Cover1 for SPL OEM CASSETTE	1
5	2114200005	2 E-Parts Box Cover2 for SPL OEM CASSETTE	1
6	2114200008	E-Parts Box Ass'y for SPL OEM CASSETTE	1
7	4523278	RW SENSOR	1
8	2224200052	Recieve Water Ass'y for SPL OEM CASSETTE	1
9	2224209003	Evaporator Base Ass'y for OEM CASSETTE SPL	1
10	4523277	SENSOR	1
11	453014400	Indoor Unit Frame Assy. OEM CASSETTE90X90 KN24/30/36/45 Airwell AUS.	1
12	2114200003	Fan Ass'y for SPL OEM CASSETTE	1
13	2154200010	Evaporator Assy./KN 24 R410A	1
14	466100002	Metal Motor 55W 770/740/700/620 RPM	1
15	2124200050	Base Pan Ass'y for SPL OEM CASSETTE	1
16	4525530	Pump PSB-12 for OEM CASSETTE90X90	1
17	2114200015	Cover	4
18	2240010007	Swing motor	1
19	8224200007	Louver	4
20	2114200024	Filter	1
21	2114200021	Switch for grille	2
22	8144200001	Switch cover for grille	1
23	2114200020	Air inlet grille	1
24	8141990001	Hanger for panel assy.	4
25	2114200011	Display PCB holder	1
26	2114200007	LED holder	1
27	4523483	Display PCB EHK: 901-085-00	1
28	2114200022	Control box cover	1
29	453043100	OEM CASSETTE90X90 Indoor Unit Frame AIRWELL Australia(2114209089)	1
30	2114200016	1 Back board, air outlet 1	1
31	2114200017	2 Back board, air outlet 2	1
32	2114200018	3 Back board, air outlet 3	1
33	2114200019	4 Back board, air outlet 4	1
34	8224200005	1 EPS foam, air outlet 1	4
35	8224200006	2 EPS foam, air outlet 2	4

13.3 Intdoor Unit: KXL 30 DCI

No.	Part No.	Item Description	Qty
1	455000103	Double patch Capacitor for fan motor 3.5uF (CBB61S)	1
2	467300035R	(DCI KN) Controller/Indoor Units EHK911A522-00	
3	4523162	TRANSFORMER ASSY.	1
4	2114200004	1 E-Parts Box Cover1 for SPL OEM CASSETTE	1
5	2114200005	2 E-Parts Box Cover2 for SPL OEM CASSETTE	1
6	2334209153	E-Parts Box Ass'y for OEM CASSETTE SPL	1
7	4523278	RW SENSOR	1
8	2224200601	Receive Water Ass'y for OEM CASSETTE SPL	1
9	2224209005	Evaporator Base Ass'y for OEM CASSETTE SPL	1
10	4523277	ICT SENSOR	1
11	453014400	Indoor Unit Frame Assy. OEM CASSETTE90X90 KN24/30/36/45 Airwell AUS.	1
12	2114200601	Fan Ass'y for OEM CASSETTE SPL	1
13	2154200610	Evaporator Ass'y for OEM CASSETTE SPL	1
14	466100004	Metal Motor 56W 600/580/540/500 RPM	1
15	2124200601	Base Pan Ass'y for OEM CASSETTE SPL	1
16	4525530	Pump PSB-12 for OEM CASSETTE90X90	1
17	2114200015	Cover	4
18	2240010007	Swing motor	1
19	8224200007	Louver	4
20	2114200024	Filter	1
21	2114200021	Switch for grille	2
22	8144200001	Switch cover for grille	1
23	2114200020	Air inlet grille	1
24	8141990001	Hanger for panel assy.	4
25	2114200011	Display PCB holder	1
26	2114200007	LED holder	1
27	4523483	Display PCB EHK: 901-085-00	1
28	2114200022	Control box cover	1
29	453043100	OEM CASSETTE90X90 Indoor Unit Frame AIRWELL Australia(2114209089)	1
30	2114200016	1 Back board, air outlet 1	1
31	2114200017	2 Back board, air outlet 2	1
32	2114200018	3 Back board, air outlet 3	1
33	2114200019	4 Back board, air outlet 4	1
34	8224200005	1 EPS foam, air outlet 1	4
35	8224200006	2 EPS foam, air outlet 2	4


13.4 Outdoor Unit: GC 24 Z DCI

13.5 Outdoor Unit: GC 24 Z DCI

No.	ltem	Description	Quan.
1	465100000	Grill/ DCI Trio	1
2	4523652	PAINTED LEFT CABINET ASSY	1
3	4523758	Nut M8 left	1
4	452960400	Outdoor Fan	1
5	461600023	4-Way Valve Assy.	1
6	4522509	4-way Valve Coil	1
7	4526522	FOUR-WAY VALVE R410A	1
8	466130002R	DC Motor 70W 8P	1
9	4522601	Right Handle	1
10	4523653	PAINTED RIGHT CABINET ASSY	1
11	4526775	Compressor Top Thermistor(CTT)	1
12	452956500	OMT Thermistor(OMT)	1
13	452677601	Outdoor Coil Thermistor(OCT)	1
14	452809900	Base Plate Painting Assy.	1
15	460080000R	Compressor Assy./ C-7RVN153H0W SANYO ShenYang)	1
16	452783600	Oil Separator Assy.	1
17	452783200	Liquid-gas Separator	1
18	453256100	Support Painting Support Assy./Gas-Liquid Separator	1
19	4526080	Valve plate paint assy	1
20	4526513	LOW PRESS VALVE (R410A)	1
21	4526514	Hight press valve(R410A)	1
22	4523654	PAINTED RIGHT BACK CABINET ASSY	1
23	4522602	Valve Cover	1
24	4518950	Filter Drier BFK-053S	1
26	204107	Cable clip Nylon	2
27	467420003	7 Poles Terminal Block	1
28	464280001	Terminal Plate/ DCI 72Z	1
29	4526215	Electronic expansion valve ZDPF(L)-1.6C-01-RK for R410A	1
30	4526216	EEV COIL QA(L)12-MD-02	1
31	462300002	Condenser Assy.	1
32	453175500	Guard Net Painting Assy.	1
33	453083800	Support/OAT	1
34	4526396	Choke Assy.167-021-01	1
35	464730006	Partition Plate Assy./DCI 72Z	1
36	467300082R	Controller/Outdoor Unit DCI 3.0KW(English) 906A-361-00	1
37	452888500	Motor Support	1
38	464250044	Connect Plate/Controller DCI 72Z	1
39	452841100	Earth wire	3
39	4516540	Earth wire	2
40	453238900	Sensor/OAT	1
41	4523657	PAINTED TOP COVER ASSY	1
42	4522600	Left Handle	1
43	467300114R	DCI 3.0KW EMI Fillter Board 901A-574-00	1

13.6 Outdoor Unit: GC 30 DCI

1

13.7 Outdoor Unit: GC 30 DCI

No.	Part No.	Description	Qty
1	465100000	Outlet grid	1
2	4523652	PAINTED LEFT CABINET ASSY	1
3	4523758	Nut M8 left	1
4	452960400	OUTDOOR FAN	1
5	461600002	4-Way Valve Assy.	1
6	452956700	4-way valve coil	1
7	4526522	Four-Way Valve R410A	1
8	466130001	DC Motor 70W 830rpm(SIC-71FW-F170-1)	1
9	4522601	Right Handle	1
10	4523653	Painted Right Cabinet Assy.	1
11	452966200	Compressor Top Thermistor(CTT)	1
12	452956500	Suction Thermistor(SUCT)	1
13	452677601	Outdoor Coil Thermistor(OCT)	1
14	452809900	Base Plate Painting Assy.	1
15	452803300	Compressor Assy. TNB220FLBM1	1
16	452783600	Oil Separator Assy.	1
17	452783200	Liquid-Gas Separator	1
18	453256100	Support Painting Assy./Gas-Liquid Separator	1
19	4526080	Valve Plate Paint Assy.	1
20	4526513	Low Press Valve R410A	1
21	4526514	High Press Valve R410A	1
22	4523654	Painted Right Back Cabinet Assy.	1
23	4522602	Valve Cover	1
24	4518950	Filter Drier BFK-053S	1
25	467300005	Display Assy.(optional)	1
26	204107	Cable clip Nylon	2
27	467420003	7 Poles Terminal Block	1
28	453138800	Terminal Plate	1
29	4526215	Electronic Expansion Valve ZDPF(L)-1.6C-01-RK	1
30	4526216	EEV COIL QA(L)12-MD-02	1
31	462300002	Condenser Assy.	1
32	453175500	Guard Net Painting Assy.	1
33	453083800	OAT Support	1
34	453256000	Choke Assy.	1
35	452809700	Partition Plate	1
36	453170000	Controller	1
37	452888500	Motor Support	1
38	464250004	Controller Connect Plate	1
39	4526968	Grounding wire with magnetic ring	1
40	4526774	Outdoor Air Thermistor(OAT)	1
41	4523657	Painted Top Cover Assy.	1
42	4522600	Left Handle	1

APPENDIX A

INSTALLATION AND OPERATION MANUAL

- ► INSTALLATION MANUAL KLX 24 / 30 DCI
- ► OPERATION MANUAL KLX 24 / 30 DCI